๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page

Was this helpful?

  1. TIL : ML
  2. Boostcamp 2st
  3. [U]Stage-NLP

(07๊ฐ•) Transformer (1)

210913

Previous(08๊ฐ•) Transformer (2)Next6W Retrospective

Last updated 3 years ago

Was this helpful?

Transformer

๊ธฐ์กด์— Add-on ์œผ๋กœ๋งŒ ์‚ฌ์šฉ๋˜๋Š” Attention์„ ์ „๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๊ณ  RNN๊ณผ CNN ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๋ชจ๋ธ์ด๋‹ค.

  • ์ด์ „ ์ •๋ณด๋“ค์„ hidden state์— ๋‹ด์•„ ๋„˜๊ธฐ๋Š” ๋ชจ์Šต์ด๋‹ค. hidden state์™€ ๊ฐ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์™€์˜ ๊ด€๊ณ„๋Š” ์˜ค๋ฅธ์ชฝ๊ณผ ๊ฐ™๋‹ค.

  • ๊ทธ๋Ÿฌ๋‚˜, ์–ด์ฉ” ์ˆ˜ ์—†์ด ๊ฐ time step์„ ๊ฑฐ์น˜๋ฉด์„œ ์ •๋ณด๊ฐ€ ์†์‹ค๋  ์ˆ˜ ๋ฐ–์— ์—†๋Š” ๊ตฌ์กฐ์ด๋‹ค.

์–‘๋ฐฉํ–ฅ RNN์— ๋Œ€ํ•œ ๊ตฌ์กฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ์˜ˆ๋ฅผ ๋“ค์–ด GO ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ณธ๋‹ค๋ฉด, go์˜ ์™ผ์ชฝ ๋‹จ์–ด๋“ค์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ๋‹ด๊ฒจ์žˆ๋Š” Forward RNN์˜ hf ์™€ go์˜ ์˜ค๋ฅธ์ชฝ ๋‹จ์–ด๋“ค์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ๋‹ด๊ฒจ์žˆ๋Š” Backwrad RNN์˜ hb๋ฅผ concatํ•ด์„œ ๊ธฐ์กด hidden state์˜ 2๋ฐฐ ํฌ๊ธฐ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๊ฒƒ์„ go์˜ ์ธ์ฝ”๋”ฉ ๋ฒกํ„ฐ๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค.

Transformer์˜ ๊ตฌ์กฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ์˜ ํฌ๊ธฐ๋Š” ์œ ์ง€๋˜๋ฉฐ ์ž…๋ ฅ ๋ฒกํ„ฐ์˜ ์ •๋ณด๋ฅผ ์ž˜ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ์•Œ์•„๋ณด์ž

  • ์ดˆ๊ธฐ์—๋Š” ์ฃผ์–ด์ง„ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋“ค์„ ๊ฐ€์ง€๊ณ ๋งŒ ์—ฐ์‚ฐ์„ ํ–ˆ๋‹ค.

    • ๋งŒ์•ฝ, ์ฒซ๋ฒˆ์งธ time step์— ๋Œ€ํ•œ ๋ฒกํ„ฐ๋ฅผ ๋ฐ˜ํ™˜ํ•œ๋‹ค๊ณ  ํ•˜๋ฉด, I์™€ I, I์™€ go, I์™€ home์„ ๋‚ด์ ํ•ด์„œ ๋ฐ˜ํ™˜ํ–ˆ๋‹ค. (I๊ฐ€ ๊ธฐ์ค€์ด ๋˜๊ณ  ์ž์‹ ์„ ํฌํ•จํ•œ ๋‚˜๋จธ์ง€ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์™€ ๋‚ด์ ์„ ํ•œ ๊ฒƒ)

    • ์ž์‹ ๊ณผ ์ž์‹ ์„ ๋‚ด์ ํ•˜๋ฉด ๋น„๊ต์  ๋‹ค๋ฅธ ๋ฒกํ„ฐ์™€์˜ ๋‚ด์ ๋ณด๋‹ค ๊ฐ’์ด ํฌ๊ฒŒ ๋‚˜์˜ค๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜ํ™˜๋œ ๊ฐ’๋“ค์ด ๋Œ€์ฒด๋กœ ๋ณธ์ธ๊ณผ ๋‚ด์ ํ•œ ๊ฐ’์ด ํฐ ๋ถ„ํฌ์˜ ์–‘์ƒ์„ ๋ณด์˜€๋‹ค.

  • ๊ทธ๋ž˜์„œ, ๊ธฐ์ค€์ด ๋˜๋Š” ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์˜ Wq ๋ฅผ ๊ณฑํ•ด์„œ ์–ป์€ q1 ์ด๋ผ๋Š” ์ฟผ๋ฆฌ๋ฒกํ„ฐ๋ฅผ ์–ป๊ฒŒ๋˜๊ณ  ๋ชจ๋“  ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋Š” ์ด ์ฟผ๋ฆฌ๋ฒกํ„ฐ์™€ ๋งค์นญ๋œ๋‹ค. (๋งค์นญ์ด ๋  ๋ฟ ๋‚ด์ ๋˜๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค! ๋ฐ”๋กœ ์ด์–ด์„œ ์„ค๋ช…!)

    • Wq๋„ ๊ทธ๋ƒฅ ์ •ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋งค๋ฒˆ ํ•™์Šต์„ ํ†ตํ•ด ์ฟผ๋ฆฌ๋ฒกํ„ฐ์— ๋Œ€ํ•œ ์ตœ์ ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๊ฒฐ์ •ํ•˜๊ฒŒ ๋œ๋‹ค.

  • ์ด ๋•Œ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋“ค๊ณผ ์ฟผ๋ฆฌ ๋ฒกํ„ฐ๋ฅผ ๋ฐ”๋กœ ๋‚ด์ ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋‹ค. ๊ฐ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋“ค๊ณผ Wk๋ฅผ ๊ณฑํ•ด์„œ ์–ป์€ k ๋ผ๋Š” ํ‚ค๋ฒกํ„ฐ๋ฅผ ์–ป์–ด์•ผ ํ•œ๋‹ค. ๊ทธ๋ž˜์„œ ์ด ํ‚ค๋ฒกํ„ฐ์™€ ์ฟผ๋ฆฌ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ ํ•˜๊ฒŒ ๋œ๋‹ค.

    • ๋ชจ๋“  ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋“ค์€ ์ฟผ๋ฆฌ๋ฒกํ„ฐ์™€ ํ‚ค๋ฒกํ„ฐ๋ฅผ ํ•˜๋‚˜์”ฉ ๊ฐ€์ง€๊ณ ์žˆ๋‹ค๊ณ  ๋ณด๋ฉด ๋œ๋‹ค.

    • ์–ด๋–ค ๊ธฐ์ค€์ด ๋˜๋Š” ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๊ฐ€ ์žˆ์œผ๋ฉด, ๊ทธ ๋•Œ ์‚ฌ์šฉ๋˜๋Š” ์ฟผ๋ฆฌ๋ฒกํ„ฐ๋Š” 1๊ฐœ, ํ‚ค๋ฒกํ„ฐ๋Š” n๊ฐœ ์ด๋‹ค. (n์€ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์˜ ๊ฐœ์ˆ˜)

์ •๋ฆฌํ•˜์ž๋ฉด, ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋Š” ๊ธฐ์กด์—๋Š” ์œ ์‚ฌ๋„๋ฅผ ๊ตฌํ•˜๋Š” ์žฌ๋ฃŒ๋ฒกํ„ฐ๋กœ ์“ฐ์˜€์ง€๋งŒ, ์ง€๊ธˆ์€ ์œ ์‚ฌ๋„๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ์ฟผ๋ฆฌ๋ฒกํ„ฐ์™€ ํ‚ค๋ฒกํ„ฐ์˜ ์žฌ๋ฃŒ๋ฒกํ„ฐ๋กœ ์“ฐ์ด๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค. ๋˜, ์œ ์‚ฌ๋„์™€ ๊ณฑํ•ด์ง€๋Š” ๊ฐ€์ค‘์น˜ ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•œ ์žฌ๋ฃŒ๋ฒกํ„ฐ๋กœ๋„ ์“ฐ์ด๋ฉฐ ์ด ๊ฒƒ์ด ๋ฐธ๋ฅ˜๋ฒกํ„ฐ์ด๋‹ค.

  • ๋ฐธ๋ฅ˜๋ฒกํ„ฐ๋Š” ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ(=์žฌ๋ฃŒ ๋ฒกํ„ฐ)์™€ Wv์™€ ๊ณฑํ•ด์ ธ์„œ ์–ป์–ด์ง€๋ฉฐ ํ‚ค๋ฒกํ„ฐ์™€ ์ฟผ๋ฆฌ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ ํ•ด์„œ ๋‚˜์˜จ ๊ฐ’์— softmax๋ฅผ ์ทจํ•˜๊ณ  ์–ป์–ด์ง„ ๊ฐ’์— ๊ฐ€์ค‘ํ‰๊ท ์œผ๋กœ ๊ณฑํ•ด์ ธ์„œ ์ตœ์ข… ์ธ์ฝ”๋”ฉ ๋ฒกํ„ฐ๋ฅผ ์–ป๊ฒŒ๋œ๋‹ค.

์ด๋ ‡๊ฒŒ ๊ตฌ์„ฑ์„ ํ•˜๋ฉด, ๋น„๋ก ์ž์‹ ์˜ ์ฟผ๋ฆฌ๋ฒกํ„ฐ์™€ ์ž์‹ ์˜ ํ‚ค๋ฒกํ„ฐ์˜ ๋‚ด์ ์„ ๊ฑฐ์ณ ๊ตฌํ•œ ๊ฐ’์ด๋ผ๊ณ  ํ• ์ง€๋ผ๋„ ๋‹ค๋ฅธ ๋ฒกํ„ฐ๋“ค๋ณด๋‹ค ๊ฐ’์ด ์ž‘์„ ์ˆ˜๋„ ์žˆ๋‹ค๋Š” ํŠน์ง•์ด ์žˆ๋‹ค.

๋˜, ํƒ€์ž„์Šคํ…์— ์ƒ๊ด€์—†์ด ๊ฐ๊ฐ์˜ ๊ณ ์œ  ์ •๋ณด๋งŒ์„ ๊ฐ€์ง€๊ณ  ์ธ์ฝ”๋”ฉ ๋ฒกํ„ฐ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค.

์ •๋ฆฌํ•ด๋ณผ๊ฒŒ์š”!!

  • ๊ฒฐ๊ณผ๋ฌผ(=์ธ์ฝ”๋”ฉ ๋ฒกํ„ฐ)์€ ๋ฐธ๋ฅ˜๋ฒกํ„ฐ์˜ ๊ฐ€์ค‘ํ•ฉ์œผ๋กœ ๊ณ„์‚ฐ๋œ๋‹ค!

  • ์ด ๋•Œ์˜ ๊ฐ€์ค‘์น˜๋Š” ๊ฐ๊ฐ์˜ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์˜ ์ฟผ๋ฆฌ๋ฒกํ„ฐ์™€ ํ‚ค๋ฒกํ„ฐ์˜ ๋‚ด์ ๊ฐ’์œผ๋กœ ๊ณ„์‚ฐ๋œ๋‹ค!

  • ๋‚ด์ ์„ ํ•ด์•ผํ•˜๋ฏ€๋กœ ์ฟผ๋ฆฌ๋ฒกํ„ฐ์™€ ํ‚ค๋ฒกํ„ฐ๋Š” ์ฐจ์›์ด ๋™์ผํ•ด์•ผํ•œ๋‹ค!

  • ๋ฐธ๋ฅ˜๋ฒกํ„ฐ์˜ ์ฐจ์›์€ ๊ผญ ๋™์ผํ•˜์ง€ ์•Š์•„๋„ ๋œ๋‹ค.

์ด๋ฅผ ์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • A : Attention ๋ชจ๋“ˆ์—์„œ๋Š”

  • q, K, V : ์ฟผ๋ฆฌ ๋ฒกํ„ฐ ํ•œ๊ฐœ, ํ‚ค ๋ฒกํ„ฐ ์ „์ฒด, ๋ฐธ๋ฅ˜ ๋ฒกํ„ฐ ์ „์ฒด๊ฐ€ ํ•„์š”ํ•˜๋ฉฐ,

    • ์ฟผ๋ฆฌ ๋ฒกํ„ฐ๊ฐ€ ํ•œ๊ฐœ๋ผ ์†Œ๋ฌธ์ž๋กœ ์“ด ๋””ํ…Œ์ผ!!

  • ์ฟผ๋ฆฌ๋ฒกํ„ฐ ํ•˜๋‚˜์™€ ํ‚ค ๋ฒกํ„ฐ ๋ชจ๋‘๋ฅผ ๋‚ด์ ํ•˜์—ฌ ์ด์— ๋Œ€ํ•œ softmax๊ฐ’์„ ๊ตฌํ•˜๊ณ ,

  • ์ด๋ฅผ ๋ฐธ๋ฅ˜๋ฒกํ„ฐ์™€ ๊ฐ€์ค‘ํ•ฉํ•ด์„œ ์ตœ์ข… ๊ฒฐ๊ณผ๋ฌผ์„ ์–ป๋Š”๋‹ค!

๊ทธ๋ฆฌ๊ณ  ๊ฐ๊ฐ์˜ ๊ฒฐ๊ณผ๋ฌผ์„ ๊ตฌํ•˜๋Š” ๊ณผ์ •์„ ํ–‰๋ ฌ์„ ์ด์šฉํ•˜์—ฌ ์ „์ฒด ๊ณผ์ •์œผ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค.

  • GPU๋ฅผ ์‚ฌ์šฉํ•ด์„œ ํ–‰๋ ฌ ์—ฐ์‚ฐ์„ ๋น ๋ฅด๊ฒŒ ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— Transformer๋Š” ๊ธฐ์กด RNN ๋ชจ๋ธ๋ณด๋‹ค ํ•™์Šต์„ ๋” ์ž˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ๋œ๋‹ค.

  • ์‹ค์ œ Transformer๋ฅผ ๊ตฌํ˜„ํ–ˆ์„ ๋•Œ๋Š” Q, K, V์˜ shape๊ฐ€ ๋ชจ๋‘ ๋™์ผํ–ˆ๋‹ค.

ํŠธ๋žœ์Šคํฌ๋จธ์˜ ๊ณผ์ •์„ ๊ทธ๋ฆผ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค.

  • ๊ทผ๋ฐ ์ €๊ธฐ์„œ dk \sqrt d_k dโ€‹kโ€‹๋ผ๋Š” ๊ฐ’์œผ๋กœ ๋‚˜๋ˆ„์–ด์ฃผ๋Š” ๋ถ€๋ถ„์ด ์žˆ๋Š”๋ฐ ์ด๊ฑด ๋ญ˜๊นŒ?

๋‹ค์Œ์˜ ์˜ˆ์‹œ๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž.

๊ทธ๋ฆฌ๊ณ , a์™€ b, x์™€ y๋Š” ๊ฐ๊ฐ ๋…๋ฆฝ์ด๋ฉด์„œ ํ‰๊ท ์ด 0์ด๊ณ  ๋ถ„์‚ฐ์ด 1์ธ ๋ถ„ํฌ์˜ ํ™•๋ฅ ๋ณ€์ˆ˜๋ผ๊ณ  ๊ฐ€์ •ํ•˜์ž.

์ด ๋•Œ, ax๋Š” ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ํ‰๊ท ์ด 0์ด๊ณ , ๋ถ„์‚ฐ์ด 1์ด๋˜๋ฉฐ by๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ํ‰๊ท ์ด 0์ด๋˜๊ณ , ๋ถ„์‚ฐ์ด 1์ด๋œ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ax+by๋Š” ํ‰๊ท ์ด 0์ด๊ณ , ๋ถ„์‚ฐ์ด 2๊ฐ€ ๋œ๋‹ค๊ณ  ํ•œ๋‹ค!

๋‚ด ์Šคํƒ€์ผ์€ ์ˆ˜์‹์  ์ฆ๋ช… ๋ณด๋‹ค๋Š” ํ•ด์„์  ์ฆ๋ช… ์ด๊ธฐ์— ์ด์— ๋Œ€ํ•ด ์งˆ๋ฌธ๊ฒŒ์‹œํŒ์— ์˜ฌ๋ฆฐ ์งˆ๋ฌธ๊ณผ ๋ฐ›์€ ๋‹ต๋ณ€์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

์งˆ๋ฌธ

๊ฐ•์˜์—์„œ๋Š” dk๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ถ„์‚ฐ์ด ์ฆ๊ฐ€ํ•ด์„œ ์ด๋ฅผ ์Šค์ผ€์ผ๋ง ํ•ด์ค˜์•ผ ๋œ๋‹ค๊ณ  ์„ค๋ช…ํ•˜๋Š”๋ฐ์š”. "๊ฐ ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์˜ ์ˆ˜๋“ค์ด ํŠน์ • ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •ํ–ˆ์„ ๋•Œ, ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ์˜ ์ฐจ์›์ด ๋Š˜์–ด๋‚œ๋‹ค๋Š” ๋ง์€, ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ์ˆ˜๋“ค์ด ๋งŽ์•„์ง„๋‹ค๋Š” ์ด์•ผ๊ธฐ์ด๊ณ ,ํ‘œํ˜„ํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ์ˆ˜๋“ค์€ ํŠน์ • ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋ฏ€๋กœ, ๊ฒฐ๊ตญ ํ•ด๋‹น ํ™•๋ฅ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋Š” ํ‘œ๋ณธ์ง‘๋‹จ์˜ ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ํ‘œ๋ณธ์ง‘๋‹จ์˜ ๋ถ„์‚ฐ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ผด์„ ๋ณด์ด๊ฒŒ๋œ๋‹ค. " ๋กœ ์ดํ•ดํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?

๋‹ต๋ณ€

๋„ค ๋งž์Šต๋‹ˆ๋‹ค.

ใ…‹ใ…‹ใ…‹ใ…‹ใ…‹ ๊ทธ๋ž˜์„œ, ๊ฒฐ๋ก ! ์ž„๋ฒ ๋”ฉ ์ฐจ์›์ด ๋Š˜์–ด๋‚ ์ˆ˜๋ก, ์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜๋“ค์ด ๋งŽ์•„์ง„๋‹ค. ๊ทธ๋ž˜์„œ ๋ถ„์‚ฐ์ด ๋งŽ์•„์ง„๋‹ค. ์‰ฝ๊ฒŒ ์ด์•ผ๊ธฐํ•˜๋ฉด ํ•™๊ต์—์„œ ํ•™๊ธ‰ ๋‹น 5๋ช…์ผ ๋•Œ๋Š” ์• ๋“ค์ด ๋Œ€์ฒด๋กœ ์„ ์ƒ๋‹˜ ๋ง์„ ์ž˜ ๋“ค์—ˆ๋Š”๋ฐ ์ด๊ฒŒ 50๋ช… 100๋ช… ๋˜๋‹ˆ๊นŒ ๋ง ์•ˆ๋“ฃ๋Š” ์• ๋“ค์ด ์ ์  ์ƒ๊ธฐ๊ธฐ ์‹œ์ž‘ํ•œ๋‹ค๋Š” ์ด์•ผ๊ธฐ.

๊ทธ๋ž˜์„œ ์˜๋„์น˜์•Š๊ฒŒ ์ฐจ์›์„ ํฌ๊ฒŒํ•˜๊ณ  Scaling์ด ๋”ฐ๋กœ ์—†๋‹ค๋ฉด, ์†Œํ”„ํŠธ๋งฅ์Šค๊ฐ€ ํŠน์ • ๊ฐ’์— ๋ชฐ๋ฆฌ๊ฒŒ ๋˜๊ณ  ์ด๋กœ ์ธํ•ด Gradient Vanishing ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค.

https://ko.khanacademy.org/math/statistics-probability/random-variables-stats-library/combine-random-variables/a/combining-random-variables-article