๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ๊ฒฐ์ •
  • ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ
  • Git์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?
  • Git branch
  • Git๊ณผ Git hub
  • 1๊ฐ• Numpy์˜ ์—ฐ์‚ฐ
  • 2๊ฐ• Numpy์™€ ์„ ํ˜•๋Œ€์ˆ˜
  • ๋ฐ‘๋ฐ”๋‹ฅ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹
  • 4์žฅ ์‹ ๊ฒฝ๋ง ํ•™์Šต
  • 4.1 ๋ฐ์ดํ„ฐ์—์„œ ํ•™์Šตํ•œ๋‹ค!
  • 4.2 ์†์‹ค ํ•จ์ˆ˜
  • 4.3 ์ˆ˜์น˜ ๋ฏธ๋ถ„
  • Coursera ML
  • OCTAVE/MATLAB TUTORIAL

Was this helpful?

  1. 2020 TIL
  2. DEC

14 Mon

TIL

๊ฒฐ์ •

์ ์–ด๋„ ๋ฐฐ์šด ๊ฒƒ์„ ๊ธฐ๋ก์€ ํ•ด์•ผ TIL์˜ ์˜๋ฏธ๊ฐ€ ์žˆ๋Š” ๊ฒƒ ๊ฐ™๋‹ค. ํ•˜์ง€๋งŒ ๋‚จ๋“ค์ด ๋ณด๊ธฐ์— ๋งค์šฐ ์ž์„ธํ•œ ๋‚ด์šฉ์ด ์•„๋‹ˆ๊ณ , ๋งŽ์€ ์ˆ˜์‹๊ณผ ๊ธ€ ๋Œ€์‹  ์ด๋ฅผ ๋‹ด์€ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€๋กœ ๋Œ€์ฒด ํ•˜๋”๋ผ๋„ ์ด๋Ÿฌํ•œ ๋ฐฉ์‹์„ ์ฑ„ํƒํ•ด ์ž‘์„ฑํ•˜๊ธฐ๋กœ ํ•œ๋‹ค. TIL์— ๋„ˆ๋ฌด ๋งŽ์€ ์‹œ๊ฐ„์„ ํˆฌ์žํ•˜์ง€ ์•Š๊ณ  ์‹ถ๋‹ค. ํ•˜์ง€๋งŒ ์ž˜์€ ์“ฐ๊ณ  ์‹ถ๋‹ค. ์ตœ๋Œ€ํ•œ ์ž˜ ์ •๋ฆฌ๋Š” ํ•  ๊ฒƒ.

ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ

3์ฃผ์ฐจ DAY 1

Git์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

์—ฌ๋Ÿฌ๋ช…์ด์„œ ํ˜‘์—…ํ•˜๋ฉด์„œ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•  ๋•Œ ์ด๋ฉ”์ผ๋“ฑ์„ ์‚ฌ์šฉํ•˜๊ธฐ์—๋Š” ์„œ๋กœ์˜ ์ž‘์—… ์ˆœ์„œ๊ฐ€ ๊ณ ๋ ค๋˜์–ด์•ผ ๋˜๊ณ  ์•ž์‚ฌ๋žŒ์˜ ์™„๋ฃŒ ์‹œ๊ฐ„์— ์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค. ๋ถ„์‚ฐ ๋ฒ„์ „๊ด€๋ฆฌ ์‹œ์Šคํ…œ GIT์˜ ๋“ฑ์žฅ.

Git์€ ๋ถ„์‚ฐ ๋ฒ„์ „ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ! ์„œ๋ฒ„์˜ ์›๊ฒฉ ์ €์žฅ์†Œ์— ๋ฐ์ดํ„ฐ๋ฅผ ๋‘๊ณ  ๊ฐ ๊ตฌ์„ฑ์›์˜ ์ €์žฅ์†Œ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ด€๋ฆฌ ๋ฐ ์ถ”ํ•ฉ.

git init

git repositary๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์‹ค์ œ๋กœ ์•„๋ฌด ๋ณ€ํ™”๊ฐ€ ์—†๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ .git ์ˆจ๊น€ํŒŒ์ผ์— ์กด์žฌํ•˜๊ณ  ์žˆ์Œ.

  • ๋กœ์ปฌ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด 3๊ฐ€์ง€์˜ ๊ณต๊ฐ„์œผ๋กœ ๊ตฌ๋ถ„๋˜์–ด ์žˆ์Œ.

  • Working Directory๋Š” unstaged ๋ผ๊ณ ๋„ ๋ถˆ๋ฆฌ๋ฉฐ commit์— ๋ฐ˜์˜๋˜์ง€ ์•Š์€ ๋ถ€๋ถ„์ด ์ €์žฅ๋˜์–ด ์žˆ์Œ.

  • add๋ผ๋Š” ํ–‰์œ„๋Š” ๋‹ค์Œ์— ์ปค๋ฐ‹ํ•  ๋‚ด์šฉ์„ ์ถ”๊ฐ€

  • commit์€ ์Šค๋ƒ…์ƒทํ•  ๋‚ด์šฉ์— ์ ์šฉํ•˜๋ฉฐ committed ์ƒํƒœ๋กœ ๋ฐ”๋€œ

git status

ํ˜„์žฌ branch์˜ ํŒŒ์ผ๋“ค์˜ ์ƒํƒœ๋ฅผ ์ถœ๋ ฅ

git add <์ถ”๊ฐ€ ํŒŒ์ผ>

์ปค๋ฐ‹์— ๋ฐ˜์˜ํ•  ํŒŒ์ผ์„ ์ง€์ • : unstaged -> staged

git commit -m <๋ฉ”์‹œ์ง€>

์ปค๋ฐ‹์„ ๋‚จ๊ธฐ๊ฒ ๋‹ค๋Š” ๋ช…๋ น์–ด์ด๋ฉฐ -m ์˜ต์…˜์„ ๋ถ™์ด๋ฉด ํ•ด๋‹น ๋ฉ”์‹œ์ง€๋ฅผ ์ปค๋ฐ‹ ๊ธฐ๋ก์œผ๋กœ ๋‚จ๊ธธ ์ˆ˜ ์žˆ๋‹ค.

git log

์ปค๋ฐ‹์— ๋Œ€ํ•œ ๊ธฐ๋ก์„ ์—ด๋žŒ

Git branch

์ฝ”๋“œ์˜ ํ๋ฆ„์„ ๋ถ„๋ฆฌํ•˜๊ณ  ๋ถ„๊ธฐ๋ฅผ ์„ธ์šฐ๋Š” ๊ฒƒ. ๊ธฐ๋ณธ์ ์œผ๋กœ "master" branch๊ฐ€ ์กด์žฌํ•œ๋‹ค.

git branch <branch_name>

branch_name์„ ๊ฐ€์ง„ ์ƒˆ๋กœ์šด branch๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ช…๋ น์–ด.

git branch -v

ํ˜„์žฌ ์กด์žฌํ•˜๋Š” branch๋ฅผ ์ถœ๋ ฅ

git log

์กด์žฌํ•˜๋Š” branch๋ฅผ ์—ด๋žŒ

git checkout <branch_name>

branch๋ฅผ ์ „ํ™˜ํ•˜๋Š” ๋ช…๋ น์–ด

HEAD -> branch

ํ˜„์žฌ ์ž‘์—…์ค‘์ธ branch๋ฅผ ์˜๋ฏธ

git merge <branch_name> (HEAD -> master)

ํ•ด๋‹น ๋ธŒ๋žœ์น˜๋ฅผ HEAD ๋ธŒ๋žœ์น˜์™€ ๋ณ‘ํ•ฉํ•œ๋‹ค.

git branch -d <branch_name>

ํ•ด๋‹น ๋ธŒ๋žœ์น˜๋ฅผ ์‚ญ์ œํ•œ๋‹ค.

Git๊ณผ Git hub

git remote add <๋ณ„์นญ> <์›๊ฒฉ์ €์žฅ์†Œ ์ฃผ์†Œ>

์›๊ฒฉ ์ €์žฅ์†Œ๋ฅผ ์ง€์ •ํ•˜๋Š” ๋ช…๋ น์–ด. ๋ณ„์นญ์—๋Š” ๋ณดํ†ต origin์„ ๋งŽ์ด ์‚ฌ์šฉํ•œ๋‹ค.

git remote -v

์›๊ฒฉ ์ €์žฅ์†Œ์˜ ๋ชฉ๋ก์„ ๋ณด์—ฌ์ค€๋‹ค.

git push <remote_repo_name> <branch_name>

๋กœ์ปฌ ์ €์žฅ์†Œ์˜ ๋‚ด์šฉ์„ ์›๊ฒฉ ์ €์žฅ์†Œ์˜ ๋‚ด์šฉ์œผ๋กœ ์ „์†กํ•œ๋‹ค.

git branch -M main

๋ธŒ๋žœ์น˜์˜ ์ด๋ฆ„์„ ๋ณ€๊ฒฝํ•˜๋ฉฐ -M์˜ ์ธ์ž๊ฐ€ ํ•œ๊ฐœ์ผ ๊ฒฝ์šฐ ํ˜„์žฌ ๋ธŒ๋žœ์น˜์˜ ์ด๋ฆ„์„ ํ•ด๋‹น ์ธ์ž๋กœ ๋ณ€๊ฒฝํ•œ๋‹ค.

git clone <remote_repo> <directory_name>

์›๊ฒฉ์ €์žฅ์†Œ๋ฅผ ๋กœ์ปฌ์ €์žฅ์†Œ๋กœ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ช…๋ น์ด๋‹ค. remote_repo๋Š” ์›๊ฒฉ์ €์žฅ์†Œ์˜ ์ฃผ์†Œ์ด๋ฉฐ directory_name์ด ์—†์„ ๊ฒฝ์šฐ default๋กœ ์›๊ฒฉ์ €์žฅ์†Œ์˜ ํด๋” ์ด๋ฆ„์œผ๋กœ ์ง€์ •๋œ๋‹ค.

1๊ฐ• Numpy์˜ ์—ฐ์‚ฐ

2๊ฐ• Numpy์™€ ์„ ํ˜•๋Œ€์ˆ˜

์ด ๋•Œ, eye์˜ default type์€ float์ด๋‹ค.

์—ญํ–‰๋ ฌ์ด ์—†์„ ๊ฒฝ์šฐ Singular matrix ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค.

๋ฐ‘๋ฐ”๋‹ฅ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹

4์žฅ ์‹ ๊ฒฝ๋ง ํ•™์Šต

๋ณ€์ˆ˜๊ฐ€ ์—ฌ๋Ÿฟ์ธ ํ•จ์ˆ˜์— ๋Œ€ํ•ด ๋ณ€์ˆ˜๊ฐ€ ํ•˜๋‚˜๋ฟ์ธ ํ•จ์ˆ˜๋กœ ์ •์˜ํ•ด์„œ ๊ตฌํ•˜๋Š” ๋ฏธ๋ถ„์„ ํŽธ๋ฏธ๋ถ„์ด๋ผ๊ณ  ํ•œ๋‹ค. ์ด ๋•Œ ๋ชจ๋“  ๋ฒกํ„ฐ์˜ ํŽธ๋ฏธ๋ถ„์„ ๋ฒกํ„ฐ๋กœ ์ •๋ฆฌํ•œ ๊ฒƒ์„ ๊ธฐ์šธ๊ธฐ ๋ผ๊ณ  ํ•œ๋‹ค.

ํ•™์Šต : ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ฐ€์ค‘์น˜ ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ์ตœ์ ๊ฐ’์„ ์ž๋™์œผ๋กœ ํš๋“ํ•˜๋Š” ๊ฒƒ

4.1 ๋ฐ์ดํ„ฐ์—์„œ ํ•™์Šตํ•œ๋‹ค!

์‹ ๊ฒฝ๋ง์˜ ํŠน์ง• : ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๊ณ  ํ•™์Šต. ์ฆ‰, ๋ฐ์ดํ„ฐ๋ฅผ ์ž๋™์œผ๋กœ ๊ฒฐ์ •. ์ด๊ฒƒ์ด ํผ์…‰ํŠธ๋ก ๊ณผ์˜ ์ฐจ์ด์ด๋‹ค. (ํผ์…‰ํŠธ๋ก  ์ˆ˜๋ ด ์ •๋ฆฌ์— ๋”ฐ๋ฅด๋ฉด ์„ ํ˜• ๋ถ„๋ฆฌ ๊ฐ€๋Šฅ ๋ฌธ์ œ๋Š” ์œ ํ•œ ๋ฒˆ์˜ ํ•™์Šต์„ ํ†ตํ•ด ํ’€ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น„์„ ํ˜• ๋ถ„๋ฆฌ ๋ฌธ์ œ๋Š” ์ž๋™์œผ๋กœ ํ•™์Šต์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค.)

์†๊ธ€์”จ ์ˆซ์ž '5'๋ฅผ ์ œ๋Œ€๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ํ”„๋กœ๊ทธ๋žจ์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์€ ์–ด๋ ต๋‹ค. ์‚ฌ๋žŒ์€ ์–ด๋ ต์ง€ ์•Š๊ฒŒ ์ธ์‹ํ•˜์ง€๋งŒ, ๊ทœ์น™์„ฑ์„ ๋ช…ํ™•ํ•œ ๋กœ์ง์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ. ๋”ฐ๋ผ์„œ ์„ค๊ณ„ํ•˜๋Š” ๋Œ€์‹  ๋ฐ์ดํ„ฐ์˜ ํŠน์ง•์˜ ํŒจํ„ด์„ ํ•™์Šต. ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์—์„œ๋Š” SIFT, SURF, HOG ๋“ฑ์˜ ํŠน์ง•์„ ๋งŽ์ด ์‚ฌ์šฉํ•˜๋ฉฐ, SVM, KNN ๋“ฑ์œผ๋กœ ํ•™์Šตํ•œ๋‹ค.

SIFT

์ดˆ๊ธฐ์— ์‚ฌ๋žŒ์ด ์ƒ๊ฐํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋œ๋‹ค๋ฉด ์ดํ›„์—๋Š” ์‚ฌ๋žŒ์ด ์ƒ๊ฐํ•œ ํŠน์ง•(SIFT, HOG ๋“ฑ)์„ ํ†ตํ•ด ๊ธฐ๊ณ„ ํ•™์Šต(SVM, KNN ๋“ฑ)์œผ๋กœ ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋œ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์‹ ๊ฒฝ๋ง์€ ์ด๋ฏธ์ง€๋ฅผ ์žˆ๋Š” ๊ทธ๋Œ€๋กœ ํ•™์Šตํ•œ๋‹ค. ์‚ฌ๋žŒ์ด ํŠน์ง•์„ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ, ๊ธฐ๊ณ„ ์Šค์Šค๋กœ ํŠน์ง•์„ ํ•™์Šตํ•œ๋‹ค. ์ด๋ฅผ ์ข…๋‹จ๊ฐ„ ๊ธฐ๊ณ„ํ•™์Šต ์ด๋ผ๊ณ ๋„ ํ•˜๋ฉฐ ์ž…๋ ฅ๋ถ€ํ„ฐ ์ถœ๋ ฅ๊นŒ์ง€ ์‚ฌ๋žŒ์˜ ๊ฐœ์ž…์ด ์—†๋‹ค๋Š” ์˜๋ฏธ์ด๋‹ค.

๊ธฐ๊ณ„ ํ•™์Šต์€ ๋ฐ์ดํ„ฐ๋ฅผ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์™€ ์‹œํ—˜ ๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ  ํ•™์Šต๊ณผ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๋•Œ ๋ฒ”์šฉ ๋Šฅ๋ ฅ์„ ์œ„ํ•ด ๋‘ ๋ฐ์ดํ„ฐ๋กœ ๋ถ„๋ฆฌํ•˜๋Š” ๊ฒƒ. ๋ฒ”์šฉ ๋Šฅ๋ ฅ์€ ์•„์ง ๋ณด์ง€ ๋ชปํ•œ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ๋ฅผ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ํ’€์–ด๋‚ด๋Š” ๋Šฅ๋ ฅ์ด๋‹ค. ํ•œ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ๋งŒ ํ•™์Šต๊ณผ ํ‰๊ฐ€๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ์˜ฌ๋ฐ”๋ฅธ ํ‰๊ฐ€๊ฐ€ ๋  ์ˆ˜ ์—†์œผ๋ฉฐ ํ•œ ๋ฐ์ดํ„ฐ์…‹์—๋งŒ ์ง€๋‚˜์น˜๊ฒŒ ์ตœ์ ํ™” ๋˜์–ด ์˜ค๋ฒ„ํ”ผํŒ…์ด ๋ฐœ์ƒํ•œ๋‹ค.

4.2 ์†์‹ค ํ•จ์ˆ˜

์‹ ๊ฒฝ๋ง ํ•™์Šต์—์„œ๋Š” ํ˜„์žฌ์˜ ์ƒํƒœ๋ฅผ ํ•˜๋‚˜์˜ ์ง€ํ‘œ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด ์ง€ํ‘œ๋ฅผ ๊ฐ€์žฅ ์ข‹๊ฒŒ ๋งŒ๋“ค์–ด์ฃผ๋Š” ๊ฐ€์ค‘์น˜ ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ๊ฐ’์„ ํƒ์ƒ‰ํ•œ๋‹ค. ์‹ ๊ฒฝ๋ง ํ•™์Šต์—์„œ ์‚ฌ์šฉํ•˜๋Š” ์ง€ํ‘œ๋Š” ์†์‹ค ํ•จ์ˆ˜๋ผ๊ณ  ํ•˜๋ฉฐ ์ผ๋ฐ˜์ ์œผ๋กœ ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ์™€ ๊ต์ฐจ ์—”ํŠธ๋กœํ”ผ ์˜ค์ฐจ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.

ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ

๊ต์ฐจ ์—”ํŠธ๋กœํ”ผ ์˜ค์ฐจ

์œ„ ์‹๋“ค์€ ๋‹จ์ผ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์†์‹ค ํ•จ์ˆ˜์ด๋ฉฐ ๋‹ค ๋ฐ์ดํ„ฐ์ผ ๊ฒฝ์šฐ๋Š” ๋ชจ๋“  ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์†์‹คํ•จ์ˆ˜์˜ ๊ฐ’์˜ ํ•ฉ์„ ์ง€ํ‘œ๋กœ ์‚ผ๋Š”๋‹ค.

๋งˆ์ง€๋ง‰์— N์œผ๋กœ ๋‚˜๋ˆ„๋Š” ๊ณผ์ •์„ ํ†ตํ•ด ์ •๊ทœํ™”๋ฅผ ํ•œ๋‹ค. N์œผ๋กœ ๋‚˜๋ˆ”์œผ๋กœ์จ 'ํ‰๊ท  ์†์‹ค ํ•จ์ˆ˜'๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์œผ๋ฉฐ ์ด๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๊ฐœ์ˆ˜์™€ ๊ด€๊ณ„์—†์ด ํ†ต์ผ๋œ ์ง€ํ‘œ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๊ฒŒ๋œ๋‹ค.

์ด ๋•Œ ๋ฐ์ดํ„ฐ๊ฐ€ 6๋งŒ๊ฐœ(๋˜๋Š” ๊ทธ ์ด์ƒ)๋ผ๋ฉด ๋ชจ๋“  ๋ฐ์ดํ„ฐ์˜ ์†์‹ค ํ•จ์ˆ˜์˜ ํ•ฉ์„ ๊ตฌํ•˜๊ธฐ๋Š” ๋งŽ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค. ์ด๋Ÿฐ ๊ฒฝ์šฐ ์ผ๋ถ€ ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”๋ ค ์ „์ฒด์˜ '๊ทผ์‚ฌ์น˜'๋กœ ์ด์šฉํ•œ๋‹ค. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ์ค‘ ์ผ๋ถ€๋งŒ ๊ณจ๋ผ ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ ์ด๋ฅผ ๋ฏธ๋‹ˆ ๋ฐฐ์น˜ ๋ผ๊ณ  ํ•œ๋‹ค.

์ด ๋•Œ MNIST ๋ฐ์ดํ„ฐ์…‹์„ ์ฝ์–ด์™€ 6๋งŒ๊ฐœ์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์ค‘ 10๊ฐœ๋ฅผ ๋ฝ‘๋Š” ๊ณผ์ •์—์„œ numpy๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

np.random.choice(train_size, batch_size)๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, 0์ด์ƒ train_size๋ฏธ๋งŒ์˜ ์ˆ˜ ์ค‘์—์„œ ๋ฌด์ž‘์œ„๋กœ batch_size ๋งŒํผ์˜ ๊ฐฏ์ˆ˜์˜ ์ˆ˜๋ฅผ ๊ณจ๋ผ๋‚ธ๋‹ค.

์ •ํ™•๋„ ๋Œ€์‹  ์†์‹คํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•˜๋Š” ์ด์œ 

์†์‹คํ•จ์ˆ˜๋Š” ๋ฏธ๋ถ„๊ฐ’์„ ํ† ๋Œ€๋กœ ์–‘์˜ ๋ฐฉํ–ฅ ๋˜๋Š” ๊ทธ ๋ฐ˜๋Œ€๋กœ ์ง„ํ–‰ํ•˜๋Š”๋ฐ ๋น„ํ•ด ์ •ํ™•๋„๋Š” ๋ฏธ๋ถ„๊ฐ’์ด 0์ผ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„ ์ง„ํ–‰์„ ๋ฉˆ์ถœ ๋•Œ๊ฐ€ ๋งŽ๋‹ค. ๊ทธ๋Ÿผ ์™œ 0์ผ ๋–„๊ฐ€ ๋งŽ์„๊นŒ? ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ๊ฐ’์ด ์กฐ๊ธˆ ๋ณ€ํ•˜๋ฉด ์†์‹ค ํ•จ์ˆ˜๋Š” ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ•˜๊ฒŒ ๋˜์ง€๋งŒ ์ •ํ™•๋„๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ๋ฏธ์†Œํ•œ ๋ณ€ํ™”์—๋Š” ๊ฑฐ์˜ ๋ฐ˜์‘์„ ๋ณด์ด์ง€ ์•Š์œผ๋ฉฐ ๋ฐ˜์‘์ด ์žˆ๋”๋ผ๋„ ๊ทธ ๊ฐ’์ด ๋ถˆ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ™”ํ•œ๋‹ค. ๊ณ„๋‹จ ํ•จ์ˆ˜๋ฅผ ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋กœ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ์ด์œ ๋„ ์ด์™€ ๊ฐ™๋‹ค.

4.3 ์ˆ˜์น˜ ๋ฏธ๋ถ„

์•„์ฃผ ์ž‘์€ ์ฐจ๋ถ„์œผ๋กœ ๋ฏธ๋ถ„ํ•˜๋Š” ๊ฒƒ์„ ์ˆ˜์น˜ ๋ฏธ๋ถ„์ด๋ผ๊ณ  ํ•œ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ˜์˜ฌ๋ฆผ ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์–ด ์ตœ์ข… ๊ณ„์‚ฐ ๊ฒฐ๊ณผ์— ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒ๋œ๋‹ค.

>>> np.float32(1e-50)
0

์ˆ˜์น˜ ๋ฏธ๋ถ„์—๋Š” ์˜ค์ฐจ๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉฐ ์˜ค์ฐจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด x+h ์™€ x-h์ผ ๋•Œ์˜ ์ฐจ๋ถ„์„ ๊ณ„์‚ฐํ•˜๊ธฐ๋„ ํ•œ๋‹ค. x๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๊ทธ ์ „ํ›„์˜ ์ฐจ๋ถ„์„ ๊ณ„์‚ฐํ•œ๋‹ค๊ณ  ํ•˜์—ฌ ์ค‘์‹ฌ ์ฐจ๋ถ„ ํ˜น์€ ์ค‘์•™ ์ฐจ๋ถ„์ด๋ผ๊ณ  ํ•œ๋‹ค. x+h์™€ x์˜ ์ฐจ๋ถ„์€ ์ „๋ฐฉ ์ฐจ๋ถ„์ด๋ผ๊ณ  ํ•œ๋‹ค.

Coursera ML

OCTAVE/MATLAB TUTORIAL

Normal Equation ์— ๋Œ€ํ•œ ์„ ํ˜• ๋Œ€์ˆ˜ ์ฆ๋ช…

๊ฐ•์˜๋‚ด์šฉ

์˜ฅํƒ€๋ธŒ๋ฅผ ์ด์šฉํ•ด์„œ ์—ฌ๋Ÿฌ ์ˆ˜ํ•™์  ์—ฐ์‚ฐ๊ณผ ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•ด์„ ๊ฐ„๋‹จํžˆ ํ‘œํ˜„ ๊ฐ€๋Šฅ.

๋ฒกํ„ฐํ™”ํ•˜๋ฉด ๊ฐ„๋‹จํžˆ ํ–‰๋ ฌ ์—ฐ์‚ฐ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์–ธ๋ฒกํ„ฐํ™”์˜ ๊ฒฝ์šฐ ๋ฐ˜๋ณต ์—ฐ์‚ฐ์œผ๋กœ ์ง„ํ–‰ํ•ด์•ผํ•œ๋‹ค. ๋ฉ”๋ชจ๋ฆฌ์™€ ์†๋„์˜ tradeoff๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์‚ฌ๋ก€์ธ ๋“ฏ.

Previous15 TueNext13 Sun

Last updated 4 years ago

Was this helpful?

E=12โˆ‘(ykโˆ’tk)2 E ={1\over2} \sum(y_k - t_k)^2 E=21โ€‹โˆ‘(ykโ€‹โˆ’tkโ€‹)2

E=โˆ’โˆ‘ktklnykE = -\sum\limits_{k} t_k ln y_kE=โˆ’kโˆ‘โ€‹tkโ€‹lnykโ€‹

E=โˆ’1Nโˆ‘Nโˆ‘ktnklnynkE = -{1\over N}\sum\limits_N\sum\limits_{k} t_{nk} ln y_{nk}E=โˆ’N1โ€‹Nโˆ‘โ€‹kโˆ‘โ€‹tnkโ€‹lnynkโ€‹

ํ•œ ์ˆ˜์‹์„ ์ „๊ฐœํ•ด ๋ฏธ๋ถ„ํ•˜๋Š” ๊ฒƒ์€ ํ•ด์„์ ์ด๋ผ๊ณ  ํ•˜๋ฉฐ y=x2 y = x^2 y=x2์˜ ๋ฏธ๋ถ„์€ dydx=2x {dy \over dx} = 2x dxdyโ€‹=2x ๋กœ ํ’€์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ํ•ด์„์  ๋ฏธ๋ถ„์€ ์˜ค์ฐจ๋ฅผ ํฌํ•จํ•˜์ง€ ์•Š๋Š” ๊ฐ’์„ ๊ตฌํ•ด์ค€๋‹ค.

์Šค์ผ€์ผ ์ŠคํŽ˜์ด์Šค(scale space)๋ž€ ๋ฌด์—‡์ธ๊ฐ€?bskyvision.com
Logo
SIFT (Scale Invariant Feature Transform)์˜ ์›๋ฆฌbskyvision.com
Logo
https://kgwcredit.tistory.com/13kgwcredit.tistory.com