๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ
  • Matlab์œผ๋กœ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”ํ•˜๊ธฐ
  • I. Matplotlib ์‹œ์ž‘ํ•˜๊ธฐ
  • II. Matplotlib Case Study
  • III. Matplotlib Case Study
  • IV. The ๋ฉ‹์ง„ ๊ทธ๋ž˜ํ”„, Seaborn Case Study

Was this helpful?

  1. 2020 TIL
  2. DEC

16 Wed

TIL

ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ

3์ฃผ์ฐจ DAY 3

Matlab์œผ๋กœ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”ํ•˜๊ธฐ

๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๊ธฐ์ข‹๊ฒŒ ํ‘œํ˜„ํ•ด๋ด…์‹œ๋‹ค.

1. Matplotlib ์‹œ์ž‘ํ•˜๊ธฐ

2. ์ž์ฃผ ์‚ฌ์šฉ๋˜๋Š” Plotting์˜ Options

  • ํฌ๊ธฐ : figsize

  • ์ œ๋ชฉ : title

  • ๋ผ๋ฒจ : _label

  • ๋ˆˆ๊ธˆ : _tics

  • ๋ฒ”๋ก€ : legend

3. Matplotlib Case Study

  • ๊บพ์€์„  ๊ทธ๋ž˜ํ”„ (Plot)

  • ์‚ฐ์ ๋„ (Scatter Plot)

  • ๋ฐ•์Šค๊ทธ๋ฆผ (Box Plot)

  • ๋ง‰๋Œ€๊ทธ๋ž˜ํ”„ (Bar Chart)

  • ์›ํ˜•๊ทธ๋ž˜ํ”„ (Pie Chart)

4. The ๋ฉ‹์ง„ ๊ทธ๋ž˜ํ”„, seaborn Case Study

  • ์ปค๋„๋ฐ€๋„๊ทธ๋ฆผ (Kernel Density Plot)

  • ์นด์šดํŠธ๊ทธ๋ฆผ (Count Plot)

  • ์บฃ๊ทธ๋ฆผ (Cat Plot)

  • ์ŠคํŠธ๋ฆฝ๊ทธ๋ฆผ (Strip Plot)

  • ํžˆํŠธ๋งต (Heatmap)

I. Matplotlib ์‹œ์ž‘ํ•˜๊ธฐ

  • ํŒŒ์ด์ฌ์˜ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

  • cf) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ vs ํ”„๋ ˆ์ž„์›Œํฌ

  • ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ : ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋‚ด๋ถ€ ์ฝ”๋“œ๋ฅผ ์กฐํ•ฉํ•ด์„œ ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœ

  • ex : numpy, pandas

  • ํ”„๋ ˆ์ž„์›Œํฌ : ์ •ํ•ด์ ธ ์žˆ๋Š” ํ‹€์— ๋‚ด์šฉ๋ฌผ์„ ์ฑ„์›Œ๊ฐ

  • ex : django, flask

  • pip install matplotlib

  • %matplotlib inline : ํ™œ์„ฑํ™”

import numpy as np, pandas as pd, matplotlib.pyplot as plt
%matplotlib inline

II. Matplotlib Case Study

plt.plot([1, 2, 3, 4, 5]) # ์‹ค์ œ plotting์„ ํ•˜๋Š” ํ•จ์ˆ˜ # y = x + 1
# ์ด๊ฒƒ์€ plt.plot(x = index, y = [1,2,3,4,5]) ์™€ ๋™์ผ
plt.show() # plt๋ฅผ ํ™•์ธํ•˜๋Š” ๋ช…๋ น
plt.plot([2,4,2,4,2])
plt.show()

Figsize : Figure(๋„๋ฉด)์˜ ํฌ๊ธฐ ์กฐ์ ˆ

figure : ๊ทธ๋ž˜ํ”„๋ฅผ ์ด๋ฃจ๋Š” ๋„๋ฉด figsize๋Š” ํŠœํ”Œ์„ ์ด๋ฃจ๋ฉฐ 1๋‹น 72ํ”ฝ์…€์„ ์˜๋ฏธํ•œ๋‹ค

plt.figure(figsize=(3, 3)) # plotting์„ ํ•  ๋„๋ฉด์„ ์„ ์–ธ

plt.plot([0, 1, 2, 3, 4])
plt.show()

2์ฐจํ•จ์ˆ˜ ๊ทธ๋ž˜ํ”„ with plot()

# ๋ฆฌ์ŠคํŠธ๋ฅผ ์ด์šฉํ•ด์„œ 1์ฐจ ํ•จ์ˆ˜ y = x๋ฅผ ๊ทธ๋ ค๋ณด๋ฉด:

plt.plot([0, 1, 2, 3, 4])
plt.show()
# numpy.array๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•จ์ˆ˜ ๊ทธ๋ž˜ํ”„ ๊ทธ๋ฆฌ๊ธฐ

x = np.array([1, 2, 3, 4, 5]) # ์ •์˜์—ญ
y = np.array([1, 4, 9, 16, 25]) # ์น˜์—ญ

plt.plot(x, y)
plt.show()
# np.arange(a, b, c) c : 0.01

x = np.arange(-10, 10, 0.01)

plt.xlabel("x value")
plt.ylabel("f(x) value")

plt.plot(x, x**2)
plt.show()
# x, y์ถ•์˜ ๋ฒ”์œ„๋ฅผ ์„ค์ •ํ•˜๊ธฐ

x = np.arange(-10, 10, 0.01)
plt.xlabel("x value")
plt.ylabel("f(x) value")

plt.axis([-5, 5, 0 , 25]) # [x_min, x_max, y_min, y_max]

plt.plot(x, x**2)
plt.show()
# x, y์ถ•์— ๋ˆˆ๊ธˆ ์„ค์ •ํ•˜๊ธฐ

x = np.arange(-10, 10, 0.01)
plt.xlabel("x value")
plt.ylabel("f(x) value")
plt.axis([-5, 5, 0 , 25]) # [x_min, x_max, y_min, y_max]

plt.xticks([i for i in range(-5, 6, 1)])
plt.yticks([i*i for i in range(0, 6)])

plt.plot(x, x**2)
plt.show()
# ๊ทธ๋ž˜ํ”„์— title ๋‹ฌ๊ธฐ

x = np.arange(-10, 10, 0.01)
plt.xlabel("x value")
plt.ylabel("f(x) value")
plt.axis([-5, 5, 0 , 25]) # [x_min, x_max, y_min, y_max]
plt.xticks([i for i in range(-5, 6, 1)])
plt.yticks([i*i for i in range(0, 6)])

plt.title("y = x^2 graph")

plt.plot(x, x**2)
plt.show()
# ํ•จ์ˆ˜ ์„  ์ด๋ฆ„ ๋‹ฌ๊ธฐ

x = np.arange(-10, 10, 0.01)
plt.xlabel("x value")
plt.ylabel("f(x) value")
plt.axis([-5, 5, 0 , 25]) # [x_min, x_max, y_min, y_max]
plt.xticks([i for i in range(-5, 6, 1)])
plt.yticks([i*i for i in range(0, 6)])

plt.title("y = x^2 graph")

plt.plot(x, x**2, label="trend")
plt.legend()

plt.show()

III. Matplotlib Case Study

๊บพ์€์„  ๊ทธ๋ž˜ํ”„(Plot)

.plot()

x = np.arange(20) # 0~19
y = np.random.randint(0, 21, 20) # 0~20 ๋‚œ์ˆ˜๋ฅผ 20๋ฒˆ ์ƒ์„ฑ

x, y
(array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
        17, 18, 19]),
 array([ 4, 13, 12, 11,  7, 14,  7, 20,  9,  6, 14, 12, 17, 20, 12,  0,  0,
        11, 13,  6]))
plt.plot(x, y)
plt.show()
# Extra : y์ถ•์„ 20๊นŒ์ง€ ๋ณด์ด๊ฒŒ ํ•˜๊ณ ์‹ถ๋‹ค๋ฉด?, y์ถ•์„ "5"๋‹จ์œ„๋กœ ๋ณด์ด๊ฒŒ ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด?

plt.axis([0, 20, 0 , 20]) # [x_min, x_max, y_min, y_max]
plt.yticks([i for i in range(0, 21, 5)])

plt.plot(x, y)
plt.show()

์‚ฐ์ ๋„ (Scatter Plot)

.scatter()

plt.scatter(x, y)
plt.show()

Plot : ๊ทœ์น™์„ฑ Scatter Plot : ์ƒ๊ด€๊ด€๊ณ„

๋ฐ•์Šค ๊ทธ๋ฆผ (Box Plot)

  • ์ˆ˜์น˜ํ˜• ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ •๋ณด (Q1, Q2, Q3, min, max)

plt.boxplot(y)
plt.show()
# Extra : Plot์˜ title์„ "Box plot of y"

plt.boxplot((x, y))
plt.title("Box plot of x, y")
plt.show()

๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„ (Bar Plot)

  • ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ์˜ "๊ฐ’"๊ณผ ๊ทธ ๊ฐ’์˜ ํฌ๊ธฐ๋ฅผ ์ง์‚ฌ๊ฐํ˜•์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ทธ๋ฆผ

  • .bar()

plt.bar(x, y)
plt.xticks(np.arange(0, 21, 1))
plt.show()

# Extra : xtics๋ฅผ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์ฒ˜๋ฆฌํ•ด๋ด…์‹œ๋‹ค.
# cf) Histogram
# ๋„์ˆ˜๋ถ„ํฌ๋ฅผ ์ง์‚ฌ๊ฐํ˜•์˜ ๋ง‰๋Œ€ ํ˜•ํƒœ๋กœ ๋‚˜ํƒ€๋ƒˆ๋‹ค.
# ๋ง‰๋Œ€๊ทธ๋ž˜ํ”„๋Š” ๊ฐœ๊ฐœ์ธ์˜ ๋ณ€๋Ÿ‰์„ ํ‘œ์‹œ
# ํžˆ์Šคํ† ๊ทธ๋žจ์€ ์—ฌ๋Ÿฌ ๋ณ€๋Ÿ‰์„ ๋ฌถ์€ "๊ณ„๊ธ‰"์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด ํŠน์ง•
# 0, 1, 2๊ฐ€ ์•„๋‹ˆ๋ผ 0~2๊นŒ์ง€์˜ "๋ฒ”์ฃผํ˜•" ๋ฐ์ดํ„ฐ๋กœ ๊ตฌ์„ฑ ํ›„ ๊ทธ๋ฆผ์„ ๊ทธ๋ฆผ
# .hist()

plt.hist(y, bins=np.arange(0, 21, 2)) # bins : ๋ฒ”์ฃผ์˜ ๊ฐ„๊ฒฉ

# Extra : xtics ์ˆ˜์ •
plt.xticks(np.arange(0, 21, 2))
plt.show()

์›ํ˜• ๊ทธ๋ž˜ํ”„ (Pie Chart)

  • ๋ฐ์ดํ„ฐ์—์„œ ์ „์ฒด์— ๋Œ€ํ•œ ๋ถ€๋ถ„์˜ ๋น„์œจ์„ ๋ถ€์ฑ„๊ผด๋กœ ๋‚˜ํƒ€๋‚ธ ๊ทธ๋ž˜ํ”„

  • ๋‹ค๋ฅธ ๊ทธ๋ž˜ํ”„์— ๋น„ํ•ด์„œ ๋น„์œจ ํ™•์ธ์— ์šฉ์ด

  • .pie()

z = [100, 300, 200, 400]

plt.pie(z, labels=['one', 'two', 'three', 'four'])
plt.show()

IV. The ๋ฉ‹์ง„ ๊ทธ๋ž˜ํ”„, Seaborn Case Study

Matplotlib๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋” ๋‹ค์–‘ํ•œ ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•˜๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

  • ์ปค๋„๋ฐ€๋„๊ทธ๋ฆผ

  • ์นด์šดํŠธ๊ทธ๋ฆผ

  • ์บฃ๊ทธ๋ฆผ

  • ์ŠคํŠธ๋ฆฝ๊ทธ๋ฆผ

  • ํžˆํŠธ๋งต

Seaborn Import ํ•˜๊ธฐ

import seaborn as sns

์ปค๋„๋ฐ€๋„๊ทธ๋ฆผ (Kernel Density Plot)

  • ํžˆ์Šคํ† ๊ทธ๋žจ๊ณผ ๊ฐ™์€ ์—ฐ์†์ ์ธ ๋ถ„ํฌ๋ฅผ ๊ณก์„ ํ™”ํ•ด์„œ ๊ทธ๋ฆฐ ๊ทธ๋ฆผ

  • sns.kdeplot()

# in Histogram

x = np.arange(0, 22, 2)
print(x)
y = np.random.randint(0, 20, 20)
print(y)
plt.hist(y, bins=x)
plt.show()
[ 0  2  4  6  8 10 12 14 16 18 20]
[13  0 11 13 18  6  1  6 10  1  5 12 14 18  7  3  7  3  6 14]
# kdeplot

sns.kdeplot(y)
plt.show()
# kdeplot

sns.kdeplot(y, shade=True) # shade : ๊ทธ๋ž˜ํ”„ ์•„๋ž˜์— ์žˆ๋Š” ๋ถ€๋ถ„์— ๋Œ€ํ•ด์„œ ์Œ์˜์„ ์ถ”๊ฐ€ ๊ฐ€๋Šฅ
plt.show()

์นด์šดํŠธ๊ทธ๋ฆผ (Count Plot)

  • ๋ฒ”์ฃผํ˜• column์˜ ๋นˆ๋„์ˆ˜๋ฅผ ์‹œ๊ฐํ™” -> Groupby ํ›„์˜ ๋„์ˆ˜๋ฅผ ํ•˜๋Š” ๊ฒƒ๊ณผ ๋™์ผํ•œ ํšจ๊ณผ

  • sns.countplot()

vote_df = pd.DataFrame({"name":['Andy', 'Bob', 'Cat'], "vote":[True, True, False]})

vote_df

name

vote

0

Andy

True

1

Bob

True

2

Cat

False

# in matplotlib barplot

vote_count = vote_df.groupby('vote').count()
vote_count

name

vote

False

1

True

2

plt.bar(x=[False, True], height=vote_count['name'])
plt.show()
# sns์˜ countplot => countplot์„ ์‚ฌ์šฉํ•˜๋ฉด countํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ธฐ ์ข‹๊ฒŒ ์ถœ๋ ฅ ๊ฐ€๋Šฅ

sns.countplot(x=vote_df['vote'])
plt.show()

์บฃ๊ทธ๋ฆผ (Cat Plot)

  • concat์—์„œ ๋”ฐ์˜จ cat

  • ์ˆซ์žํ˜• ๋ณ€์ˆ˜์™€ ํ•˜๋‚˜ ์ด์ƒ์˜ ๋ฒ”์ฃผํ˜• ๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ํ•จ์ˆ˜

  • sns.catplot()

covid = pd.read_csv("./country_wise_latest.csv")
covid.head(5)

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

0

Afghanistan

36263

1269

25198

9796

106

10

18

3.50

69.49

5.04

35526

737

2.07

Eastern Mediterranean

1

Albania

4880

144

2745

1991

117

6

63

2.95

56.25

5.25

4171

709

17.00

Europe

2

Algeria

27973

1163

18837

7973

616

8

749

4.16

67.34

6.17

23691

4282

18.07

Africa

3

Andorra

907

52

803

52

10

0

0

5.73

88.53

6.48

884

23

2.60

Europe

4

Angola

950

41

242

667

18

1

0

4.32

25.47

16.94

749

201

26.84

Africa

s = sns.catplot(x="WHO Region", y="Confirmed", data=covid) #default : kind = 'strip'
s.fig.set_size_inches(10, 6)
plt.show()
# catplot : ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ์™€ ์ˆ˜์น˜ํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ์ถœ๋ ฅํ•˜๋Š”๋ฐ ์ข‹์Œ => ์—ฌ๋Ÿฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์Œ
s = sns.catplot(x="WHO Region", y="Confirmed", data=covid, kind='violin')
s.fig.set_size_inches(10, 6)
plt.show()
# catplot : ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ์™€ ์ˆ˜์น˜ํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ์ถœ๋ ฅํ•˜๋Š”๋ฐ ์ข‹์Œ => ์—ฌ๋Ÿฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์Œ

์ŠคํŠธ๋ฆฝ๊ทธ๋ฆผ (Strip Plot)

  • scatter plot๊ณผ ์œ ์‚ฌํ•˜๊ฒŒ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์น˜๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๊ทธ๋ž˜ํ”„

  • sns.stripplot()

sns.stripplot(x='WHO Region', y='Recovered', data=covid)
plt.show()
# cf) swarmplot - ๋™์ผํ•œ value๋ฅผ ๊ฐ€์ง„ ๊ฒฝ์šฐ ์‹ค์ œ๋กœ ์–ผ๋งˆ๋‚˜ ์žˆ๋Š”์ง€ ๋ชจ๋ฅด๋‹ˆ, ๊ฐ’์„ ํผํŠธ๋ ค์ค€๋‹ค.

s = sns.swarmplot(x='WHO Region', y='Recovered', data=covid)
plt.show()
# error๋Š” ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค ํ‘œํ˜„ํ•  ์ˆ˜ ์—†๋‹ค๋Š” warning
c:\users\32154049\appdata\local\programs\python\python37\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 22.7% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
  warnings.warn(msg, UserWarning)
c:\users\32154049\appdata\local\programs\python\python37\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 69.6% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
  warnings.warn(msg, UserWarning)
c:\users\32154049\appdata\local\programs\python\python37\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 79.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
  warnings.warn(msg, UserWarning)
c:\users\32154049\appdata\local\programs\python\python37\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 54.3% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
  warnings.warn(msg, UserWarning)
c:\users\32154049\appdata\local\programs\python\python37\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 31.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
  warnings.warn(msg, UserWarning)

ํžˆํŠธ๋งต (Heatmap)

  • ๋ฐ์ดํ„ฐ์˜ ํ–‰๋ ฌ์„ ์ƒ‰์ƒ์œผ๋กœ ํ‘œํ˜„ํ•ด์ฃผ๋Š” ๊ทธ๋ž˜ํ”„

  • sns.heatmap()

covid.corr() #correlation => ์ƒ๊ด€ ๊ด€๊ณ„

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

Confirmed

1.000000

0.934698

0.906377

0.927018

0.909720

0.871683

0.859252

0.063550

-0.064815

0.025175

0.999127

0.954710

-0.010161

Deaths

0.934698

1.000000

0.832098

0.871586

0.806975

0.814161

0.765114

0.251565

-0.114529

0.169006

0.939082

0.855330

-0.034708

Recovered

0.906377

0.832098

1.000000

0.682103

0.818942

0.820338

0.919203

0.048438

0.026610

-0.027277

0.899312

0.910013

-0.013697

Active

0.927018

0.871586

0.682103

1.000000

0.851190

0.781123

0.673887

0.054380

-0.132618

0.058386

0.931459

0.847642

-0.003752

New cases

0.909720

0.806975

0.818942

0.851190

1.000000

0.935947

0.914765

0.020104

-0.078666

-0.011637

0.896084

0.959993

0.030791

New deaths

0.871683

0.814161

0.820338

0.781123

0.935947

1.000000

0.889234

0.060399

-0.062792

-0.020750

0.862118

0.894915

0.025293

New recovered

0.859252

0.765114

0.919203

0.673887

0.914765

0.889234

1.000000

0.017090

-0.024293

-0.023340

0.839692

0.954321

0.032662

Deaths / 100 Cases

0.063550

0.251565

0.048438

0.054380

0.020104

0.060399

0.017090

1.000000

-0.168920

0.334594

0.069894

0.015095

-0.134534

Recovered / 100 Cases

-0.064815

-0.114529

0.026610

-0.132618

-0.078666

-0.062792

-0.024293

-0.168920

1.000000

-0.295381

-0.064600

-0.063013

-0.394254

Deaths / 100 Recovered

0.025175

0.169006

-0.027277

0.058386

-0.011637

-0.020750

-0.023340

0.334594

-0.295381

1.000000

0.030460

-0.013763

-0.049083

Confirmed last week

0.999127

0.939082

0.899312

0.931459

0.896084

0.862118

0.839692

0.069894

-0.064600

0.030460

1.000000

0.941448

-0.015247

1 week change

0.954710

0.855330

0.910013

0.847642

0.959993

0.894915

0.954321

0.015095

-0.063013

-0.013763

0.941448

1.000000

0.026594

1 week % increase

-0.010161

-0.034708

-0.013697

-0.003752

0.030791

0.025293

0.032662

-0.134534

-0.394254

-0.049083

-0.015247

0.026594

1.000000

# ์ˆ˜์น˜๋กœ ์ฃผ์–ด์ ธ ์žˆ์œผ๋ฉด ์•Œ์•„๋ณด๊ธฐ ์–ด๋ ค์›€
# ์ƒ‰๊น”์„ ์ด์šฉํ•ด์„œ ํ–‰๋ ฌ๋กœ ํ‘œํ˜„ 
sns.heatmap(covid.corr())
plt.show()

Previous17 ThuNext15 Tue

Last updated 4 years ago

Was this helpful?