๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • Numpy
  • ndarray
  • array creation
  • Handling shape
  • reshape : Array์˜ shape์˜ ํฌ๊ธฐ๋ฅผ ๋ณ€๊ฒฝํ•จ. element์˜ ๊ฐฏ์ˆ˜๋Š” ๋™์ผ
  • flatten : ๋‹ค์ฐจ์› array๋ฅผ 1์ฐจ์› array๋กœ ๋ณ€ํ™˜
  • indexing for numpy array
  • Create Functions
  • arange
  • zeros
  • ones
  • empty
  • somthing_like
  • identity
  • eye
  • diag
  • random sampling
  • Operation functions
  • sum
  • axis
  • mathematical functions
  • Concatenate
  • Opertaions b/t arrays
  • Comparisons
  • All & Any
  • where
  • argmax & argmin
  • boolean index
  • fancy index

Was this helpful?

  1. TIL : ML
  2. Boostcamp 2st
  3. [U]Stage-1
  4. Python

(Python 6๊ฐ•) numpy

210804

Numpy

  • Numerical Python

  • ํŒŒ์ด์ฌ์˜ ๊ณ ์„ฑ๋Šฅ ๊ณผํ•™ ๊ณ„์‚ฐ์šฉ ํŒจํ‚ค์ง€

  • Matrix์™€ Vector์™€ ๊ฐ™์€ Array์—ฐ์‚ฐ์˜ ํ‘œ์ค€

  • ํ•œ๊ธ€๋กœ ๋„˜ํŒŒ์ด๋กœ ์ฃผ๋กœ ํ†ต์นญ

ํŠน์ง•

  • ์ผ๋ฐ˜ List์— ๋น„ํ•ด ๋น ๋ฅด๊ณ  ๋ฉ”๋ชจ๋ฆฌ ํšจ์œจ์ ์ด๋‹ค

  • ๋ฐ˜๋ณต๋ฌธ ์—†์ด ๋ฐ์ดํ„ฐ ๋ฐฐ์—ด์— ๋Œ€ํ•œ ์ฒ˜๋ฆฌ๋ฅผ ์ง€์›ํ•œ๋‹ค

  • ์„ ํ˜•๋Œ€์ˆ˜์™€ ๊ด€๋ จ๋œ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค

  • C, C++, ํฌํŠธ๋ž€ ๋“ฑ์˜ ์–ธ์–ด์™€ ํ†ตํ•ฉ ๊ฐ€๋Šฅ

ndarray

import numpy as np
  • numpy์˜ ํ˜ธ์ถœ ๋ฐฉ๋ฒ•

  • ์ผ๋ฐ˜์ ์œผ๋กœ np๋ผ๋Š” ๋ณ„์นญ ์ด์šฉ

test_array = np.array([1, 4, 5, 8], float)
print(test_array)
type(test_array[3])
  • numpy๋Š” np.array ํ•จ์ˆ˜๋ฅผ ํ™œ์šฉํ•ด์„œ ๋ฐฐ์—ด์„ ์ƒ์„ฑํ•˜๋Š”๋ฐ ์ด ๋ฐฐ์—ด์„ ndarray ๋ผ๊ณ  ํ•œ๋‹ค

  • numpy๋Š” ํ•˜๋‚˜์˜ ๋ฐ์ดํ„ฐ ํƒ€์ž…๋งŒ ๋ฐฐ์—ด์— ๋„ฃ์„ ์ˆ˜ ์žˆ๋‹ค.

    • ๋ฆฌ์ŠคํŠธ์™€์˜ ์ฐจ์ด์ 

    • dynamic typing์„ ์ง€์›ํ•˜์ง€ ์•Š๋Š”๋‹ค๊ณ  ํ•œ๋‹ค

  • C์˜ Array๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐฐ์—ด์„ ์ƒ์„ฑํ•œ๋‹ค

array creation

  • ํŒŒ์ด์ฌ์€ ์ž„์˜์˜ ์œ„์น˜์— ์ €์žฅ๋˜๋Š”๋ฐ ๋น„ํ•ด C์–ธ์–ด๋Š” ์ˆœ์„œ๋Œ€๋กœ ์ €์žฅ๋œ๋‹ค.

    • c์–ธ์–ด์˜ ์ง€์—ญ์„ฑ

  • ๋˜, ํฌ๊ธฐ๊ฐ€ ๊ณ ์ •๋˜์–ด์žˆ๋‹ค.

  • ๊ทธ๋ž˜์„œ, ์†๋„๊ฐ€ ๋น ๋ฅธ๊ฒƒ

test_array = np.array([1, 4, 5, "8"], float) # String Type์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ•ด๋„

print(test_array)
array([ 1., 4., 5., 8.])

print(type(test_array[3])) # Float Type์œผ๋กœ ์ž๋™ ํ˜•๋ณ€ํ™˜์„ ์‹ค์‹œ
numpy.float64

print(test_array.dtype) # Array(๋ฐฐ์—ด) ์ „์ฒด์˜ ๋ฐ์ดํ„ฐ Type์„ ๋ฐ˜ํ™˜ํ•จ
dtype('float64')

print(test_array.shape)
(4,)
  • shape : ndarr์˜ dimension ๊ตฌ์„ฑ์„ ๋ฐ˜ํ™˜

    • array์˜ ํฌ๊ธฐ, ํ˜•ํƒœ์— ๋Œ€ํ•œ ์ •๋ณด

  • dtype : ndarrr์˜ type์„ ๋ฐ˜ํ™˜

test_array = np.array([1, 4, 5, "8"], float) # String Type์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ•ด๋„

test_array.ndim
1

test_array.size
4

test_array.nbytes
16
  • ndim : number of dimensions

  • size : data ์˜ ๊ฐœ์ˆ˜

  • nbytes : ndarray object์˜ ๋ฉ”๋ชจ๋ฆฌ ํฌ๊ธฐ๋ฅผ ๋ฐ˜ํ™˜ํ•จ

    • int๋Š” 1byte, float์€ 4 bytes

    • ํŒŒ์ด์ฌ์—์„œ float์€ 8bytes๊ฐ€ ๊ธฐ๋ณธ์ด๋‹ค. ์œ„๋Š” ๋„˜ํŒŒ์ด ๊ธฐ์ค€

Handling shape

reshape : Array์˜ shape์˜ ํฌ๊ธฐ๋ฅผ ๋ณ€๊ฒฝํ•จ. element์˜ ๊ฐฏ์ˆ˜๋Š” ๋™์ผ

test_matrix = [[1,2,3,4], [5,6,7,8]]
np.array(test_matrix).shape
>>> (2, 4)

np.array(test_matrix).reshape(8, )
>>> array([1,2,3,4,5,6,7,8])

np.array(test_matrix).reshape(-1, 2)
>>> array([[1, 2], [3, 4], [5, 6], [7, 8]]
  • -1 ์€ ์•Œ์•„์„œ ์ปดํ“จํ„ฐ๊ฐ€ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„์„ ์˜๋ฏธํ•œ๋‹ค

flatten : ๋‹ค์ฐจ์› array๋ฅผ 1์ฐจ์› array๋กœ ๋ณ€ํ™˜

  • (2, 2, 4) => (16, )

indexing for numpy array

  • list์™€ ๋‹ฌ๋ฆฌ ์ด์ฐจ์› ๋ฐฐ์—ด์—์„œ [0, 0] ํ‘œ๊ธฐ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค

    • a[0, 0] == a[0][0]

    • ๋‘˜ ๋‹ค ๊ฐ€๋Šฅํ•˜๋‹ค

  • ๋˜, list์™€ ๋‹ฌ๋ฆฌ ํ–‰๊ณผ ์—ด ๋ถ€๋ถ„์„ ๋‚˜๋ˆ ์„œ slicing์ด ๊ฐ€๋Šฅํ•˜๋‹ค

a = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], int)

a[:, 2:]
>>> array([[3, 4, 5], [8, 9, 10]])

a[1, 1:3]
>>> array([7, 8])

Create Functions

arange

  • array์˜ ๋ฒ”์œ„๋ฅผ ์ง€์ •ํ•˜์—ฌ ๊ฐ’์˜ list๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ช…๋ น์–ด

np.arrange(30)
>>> array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29])

#์‹œ์ž‘, ๋, step => ์ด ๋•Œ step์€ ์ •์ˆ˜ํ˜•์ผ ํ•„์š”๋Š” ์—†์Œ
np.arange(0, 5, 0.5)
>>> array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5])

np.arange(30).reshape(5, 6)
>>> array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23],
       [24, 25, 26, 27, 28, 29]])

zeros

  • 0์œผ๋กœ ๊ฐ€๋“์ฐฌ ndarr ์ƒ์„ฑ

>>> np.zeros((2, 5), int)
array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]])
       
>>> np. zeros((3, ), float)
array([0., 0., 0.])

ones

  • 1๋กœ ๊ฐ€๋“์ฐฌ ndarr ์ƒ์„ฑ

>>> np.ones((1, 1, 1), int)
array([[[1]]])
>>> np.ones((2, 3, 2, 3), int)
array([[[[1, 1, 1],
         [1, 1, 1]],

        [[1, 1, 1],
         [1, 1, 1]],

        [[1, 1, 1],
         [1, 1, 1]]],


       [[[1, 1, 1],
         [1, 1, 1]],

        [[1, 1, 1],
         [1, 1, 1]],

        [[1, 1, 1],
         [1, 1, 1]]]])

empty

  • shape๋งŒ ์ฃผ์–ด์ง€๊ณ  ๋น„์–ด์žˆ๋Š” ndarr ์ƒ์„ฑ

    • memory initialization์ด ๋œ ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค

    • ์ด๋ฏธ ์กด์žฌํ•˜๋Š” ๊ฐ’์€ ์ด์ „์— ์‚ฌ์šฉํ•˜๋˜ ์“ฐ๋ ˆ๊ธฐ๊ฐ’์ด๋‹ค

>>> np.empty((3, 5))
array([[2.12199579e-314, 6.36598737e-314, 1.06099790e-313,
        1.48539705e-313, 1.90979621e-313],
       [2.33419537e-313, 2.75859453e-313, 3.18299369e-313,
        3.60739285e-313, 4.03179200e-313],
       [4.45619116e-313, 4.88059032e-313, 5.30498948e-313,
        5.72938864e-313, 6.15378780e-313]])

somthing_like

  • ๊ธฐ์กด ndarr์˜ shape ํฌ๊ธฐ๋งŒํผ 1 ๋˜๋Š” 0์˜ array ๋ฐ˜ํ™˜

>>> test = np.arange(12).reshape(3, 4)
>>> test
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
       
>>> np.zeros_like(test)
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
>>> np.ones_like(test)
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])

identity

๋‹จ์œ„ํ–‰๋ ฌ ์ƒ์„ฑ

>>> np.identity(4, dtype=np.float32)
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])

eye

๋Œ€๊ฐ์„ ์ด 1์ธ ํ–‰๋ ฌ ์ƒ์„ฑ.

  • identity์™€ ๋‹ค๋ฅธ์ ์€ ์‹œ์ž‘์œ„์น˜๋ฅผ ์ •ํ•  ์ˆ˜ ์žˆ๋‹ค

  • np.eye(3, 5, k=2) ๋ฉด 2๋งŒํผ ์ด๋™๋œ 3 * 5 ํ–‰๋ ฌ ์ƒ์„ฑ

>>> np.eye(3, 5, k=2)
array([[0., 0., 1., 0., 0.],
       [0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 1.]])

diag

๋Œ€๊ฐ ํ–‰๋ ฌ์˜ ๊ฐ’์„ ์ถ”์ถœํ•จ

>>> test
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> np.diag(test)
array([ 0,  5, 10])
>>> np.diag(test, k=2)
array([2, 7])

random sampling

๋ฐ์ดํ„ฐ ๋ถ„ํฌ์— ๋”ฐ๋ฅธ sampling์œผ๋กœ array๋ฅผ ์ƒ์„ฑ

# ์‹œ์ž‘, ๋, ๊ฐœ์ˆ˜
>>> np.random.uniform(0, 1, 10)
array([0.46238198, 0.10681686, 0.0266183 , 0.60596315, 0.41614435,
       0.99164157, 0.4245724 , 0.87679971, 0.37257856, 0.31018757])

# ๊ท ๋“ฑ ๋ถ„ํฌ
>>> np.random.uniform(0, 1, 10).reshape(2, 5)
array([[0.16017842, 0.70721719, 0.79159583, 0.95743024, 0.77892252],
       [0.38001109, 0.21918138, 0.59308826, 0.56590121, 0.31633467]])

# ์ •๊ทœ ๋ถ„ํฌ
>>> np.random.normal(0, 1, 10).reshape(2, 5)
array([[-0.15451055,  0.35729475,  0.07026103, -0.68009187, -0.68631985],
       [ 0.37181644, -0.92405456,  0.50774203,  0.87155016,  1.48159822]])

Operation functions

sum

element๊ฐ„์˜ ํ•ฉ

axis

๋ชจ๋“  operation function์„ ์‹คํ–‰ํ•  ๋•Œ ๊ธฐ์ค€์ด ๋˜๋Š” dimension ์ถ•์ด๋‹ค.

mathematical functions

๋‹ค์–‘ํ•œ ์ˆ˜ํ•™ ์—ฐ์‚ฐ์ž

  • np.exp

  • np.sqrt

  • np.mean

  • np.std

Concatenate

vstack

  • numpy array๋ฅผ ์„ธ๋กœ๋กœ ๋ถ™์ž„

hstack

  • numpy array๋ฅผ ๊ฐ€๋กœ๋กœ ๋ถ™์ž„

concatenate

  • axis = 0 : vstack๊ณผ ๋™์ผ

  • axis = 1: hstack๊ณผ ๋™์ผ

newaxis

  • ์ถ•์„ ํ•˜๋‚˜ ๋Š˜๋ฆฐ๋‹ค

b = np.array([5, 6])
b = b[np.newaxis, :]
b
>>> array([[5, 6]])

Opertaions b/t arrays

  • ๊ธฐ๋ณธ์ ์œผ๋กœ numpy array๊ฐ„์˜ ๊ธฐ๋ณธ์ ์ธ ์‚ฌ์น™ ์—ฐ์‚ฐ์„ ์ง€์›ํ•œ๋‹ค

    • ์ด ๋•Œ element-wise operation์œผ๋กœ ์—ฐ์‚ฐ๋œ๋‹ค

dot product

  • ๋‚ด์  ํ•จ์ˆ˜

  • np.array.dot(np.array) ๊ผด๋กœ ์‚ฌ์šฉ

transpose

  • ์ „์น˜ ํ•จ์ˆ˜

  • np.array.T ์˜ ๊ผด๋กœ ์‚ฌ์šฉ

broadcasting

  • shape์ด ๋‹ค๋ฅธ ๋ฐฐ์—ด ๊ฐ„ ์—ฐ์‚ฐ์„ ์ง€์›ํ•˜๋Š” ๊ธฐ๋Šฅ

  • scalar - vector ์™€ vector - matrix ๊ฐ„์— ์ง€์›ํ•œ๋‹ค

timeit

  • jupyter ํ™˜๊ฒฝ์—์„œ ์ฝ”๋“œ์˜ ํผํฌ๋จผ์Šค๋ฅผ ์ฒดํฌํ•˜๋Š” ํ•จ์ˆ˜

  • ์ผ๋ฐ˜์ ์œผ๋กœ ์†๋„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค

    • numpy > list comprehension > for loop

Comparisons

All & Any

Array์˜ ๋ฐ์ดํ„ฐ ์ „๋ถ€ ๋˜๋Š” ์ผ๋ถ€๊ฐ€ ์กฐ๊ฑด์— ๋งŒ์กฑํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์—ฌ๋ถ€๋ฅผ ๋ฐ˜ํ™˜ํ•œ๋‹ค

a = np.arange(10)
a
>>> array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

np.any(a>5), np.any(a<0)
>>> (True, False)

np.all(a>5), np.all(a<10)
>>> (False, True)

numpy๋Š” ๋ฐฐ์—ด์˜ ํฌ๊ธฐ๊ฐ€ ๋™์ผํ•œ element๊ฐ„ ๋น„๊ต์˜ ๊ฒฐ๊ณผ๋ฅผ Boolean type์œผ๋กœ ๋ฐ˜ํ™˜ํ•œ๋‹ค.

test_a = np.array([1, 3, 0], float)
test_b = np.array([5, 2, 1], float)
test_a > test_b
>>> array([False, True, False], dtype=bool)

where

a = np.arange(10)
np.where(a>5)
>>> (array([6, 7, 8, 9], dtype=int64),)

a = np.array([1, np.NaN, np.Inf], float)
np.isnan(a)
>>> array([False,  True, False])

np.isfinite(a)
>>> array([ True, False, False])

argmax & argmin

array๋‚ด ์ตœ๋Œ€๊ฐ’ ๋˜๋Š” ์ตœ์†Œ๊ฐ’์˜ index๋ฅผ ๋ฐ˜ํ™˜

๋˜ํ•œ, axis ๊ธฐ๋ฐ˜์˜ ๋ฐ˜ํ™˜์„ ํ•  ์ˆ˜ ์žˆ๋‹ค

a = np.arange(0, 20, 3)
a
>>> array([ 0,  3,  6,  9, 12, 15, 18])

np.argmax(a), np.argmin(a)
>>> (6, 0)

 a = np.array([[1,2,4,7],[9,88,6,45],[9,76,3,4]])
np.argmax(a, axis=1), np.argmax(a, axis=0)
>>> (array([3, 1, 1], dtype=int64), array([1, 1, 1, 1], dtype=int64))
np.argmin(a, axis=1), np.argmin(a, axis=0)
>>> (array([0, 2, 2], dtype=int64), array([0, 0, 2, 2], dtype=int64))

boolean index

ํŠน์ • ์กฐ๊ฑด์— ๋”ฐ๋ฅธ ๊ฐ’์„ ๋ฐฐ์—ด ํ˜•ํƒœ๋กœ ์ถ”์ถœํ•œ๋‹ค.

arr > 3
>>> array([False,  True, False, False, False,  True,  True,  True])

arr[arr > 3]
>>> array([4., 8., 9., 7.])

fancy index

numpy array๋ฅผ index value๋กœ ์‚ฌ์šฉํ•ด์„œ ๊ฐ’์„ ์ถ”์ถœํ•œ๋‹ค. ์ด ๋•Œ ์ธ๋ฑ์Šค๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฐ์—ด์€ ๋ฐ˜๋“œ์‹œ ์ •์ˆ˜๋กœ ์„ ์–ธ๋˜์–ด์•ผ ํ•œ๋‹ค.

a = np.array([2, 4, 6, 8], float)
b = np.array([0, 0, 1, 3, 2, 1], int)
a[b]
>>> array([2., 2., 4., 8., 6., 4.])
  • matrixํ˜•ํƒœ๋„ ๊ฐ€๋Šฅํ•˜๋‹ค

    • a[b][c]

Previous(Python 7-1๊ฐ•) pandas INext(Python 5-2๊ฐ•) Python data handling

Last updated 3 years ago

Was this helpful?