๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ
  • 4. Exploratory Data Analysis
  • 0. ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ค€๋น„
  • 1. ๋ถ„์„์˜ ๋ชฉ์ ๊ณผ ๋ณ€์ˆ˜ ํ™•์ธ
  • 2. ๋ฐ์ดํ„ฐ ์ „์ฒด์ ์œผ๋กœ ์‚ดํŽด๋ณด๊ธฐ
  • 3. ๋ฐ์ดํ„ฐ์˜ ๊ฐœ๋ณ„ ์†์„ฑ ํŒŒ์•…ํ•˜๊ธฐ

Was this helpful?

  1. 2020 TIL
  2. DEC

17 Thu

TIL

Previous18 FriNext16 Wed

Last updated 4 years ago

Was this helpful?

ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ

3์ฃผ์ฐจ DAY 4

4. Exploratory Data Analysis

ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํ†ต๋‹ฌํ•ด๋ด…์‹œ๋‹ค. with

  1. ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ค€๋น„

  2. ๋ถ„์„์˜ ๋ชฉ์ ๊ณผ ๋ณ€์ˆ˜ ํ™•์ธ

  3. ๋ฐ์ดํ„ฐ ์ „์ฒด์ ์œผ๋กœ ์‚ดํŽด๋ณด๊ธฐ

  4. ๋ฐ์ดํ„ฐ์˜ ๊ฐœ๋ณ„ ์†์„ฑ ํŒŒ์•…ํ•˜๊ธฐ

๋ฐฉ๋ฒ•๋ก ์— ์ง‘์ค‘ํ•˜๋‹ค๋ณด๋ฉด ๋ฐ์ดํ„ฐ์˜ ๋ณธ์งˆ์  ์˜๋ฏธ๋ฅผ ํ›ผ์†ํ•˜๊ฑฐ๋‚˜ ๋ง๊ฐํ•  ์ˆ˜ ์žˆ์Œ EDA๋Š” ๋ฐ์ดํ„ฐ ๊ทธ ์ž์ฒด๋งŒ์œผ๋กœ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป์–ด๋‚ด๋Š” ์ ‘๊ทผ๋ฒ•!

Titanic : Machine Learning from Disaster

  • EDA ๊ด€์ ์—์„œ ์ข‹์€ ๋ฐ์ดํ„ฐ

1. ๋ถ„์„์˜ ๋ชฉ์ ๊ณผ ๋ณ€์ˆ˜ ํ™•์ธ

I. ๋ถ„์„์˜ ๋ชฉ์  ํ™•์ธ

  • ์‚ด์•„๋‚จ์€ ์‚ฌ๋žŒ๋“ค์€ ์–ด๋–ค ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ์„๊นŒ?

II. ๋ณ€์ˆ˜ ํ™•์ธ

  • ๋ณ€์ˆ˜๋Š” ์ด 10๊ฐœ

  • Variable : col name

  • Definition : col information

  • Key : encoding

survival : 1 ์ƒ์กด, 0 ์‚ฌ๋ง pclass : ticket class sex : sex age : age in years and fractional(๋ถ„์ˆ˜) less than 1 and estimated is .5 sibsp : sibling or spouses aboard the titanic parch : parents or children aboard the titanic ticket : ticket number fare : fare cabin : cabin number embarked : port of Embarkation(์Šน์„ ์ง€)

  • C : Cherbourg, Q : Queenstown, S = Southampton

0. ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ค€๋น„

## ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ

import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn as sns
%matplotlib inline
## ๋™์ผ ๊ฒฝ๋กœ์— "train.csv"๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฐ€์ •
## ๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ

titanic_df = pd.read_csv("./train.csv")

1. ๋ถ„์„์˜ ๋ชฉ์ ๊ณผ ๋ณ€์ˆ˜ ํ™•์ธ

  • ํƒ€์ดํƒ€๋‹‰ ํ˜ธ์—์„œ ์ƒ์กดํ•œ ์ƒ์กด์ž๋“ค์€ ์–ด๋–ค ์‚ฌ๋žŒ๋“ค์ผ๊นŒ?

## ์ƒ์œ„ 5๊ฐœ ๋ฐ์ดํ„ฐ ํ™•์ธํ•˜๊ธฐ

titanic_df.head(5)

PassengerId

Survived

Pclass

Name

Sex

Age

SibSp

Parch

Ticket

Fare

Cabin

Embarked

0

1

0

3

Braund, Mr. Owen Harris

male

22.0

1

0

A/5 21171

7.2500

NaN

S

1

2

1

1

Cumings, Mrs. John Bradley (Florence Briggs Th...

female

38.0

1

0

PC 17599

71.2833

C85

C

2

3

1

3

Heikkinen, Miss. Laina

female

26.0

0

0

STON/O2. 3101282

7.9250

NaN

S

3

4

1

1

Futrelle, Mrs. Jacques Heath (Lily May Peel)

female

35.0

1

0

113803

53.1000

C123

S

4

5

0

3

Allen, Mr. William Henry

male

35.0

0

0

373450

8.0500

NaN

S

๊ฒฐ์ธก์น˜๋ฅผ ๋ฉ”๊ฟ”์•ผ ํ•  ์ˆ˜๋„ ์žˆ๊ณ  ์ œ๊ฑฐํ•˜๊ฑฐ๋‚˜ ํŠน์ • ๋ฐฉ๋ฒ•์œผ๋กœ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•  ์ˆ˜๋„ ์žˆ์Œ

## ๊ฐ Column์˜ ๋ฐ์ดํ„ฐ ํƒ€์ž… ํ™•์ธํ•˜๊ธฐ

titanic_df.dtypes
PassengerId      int64
Survived         int64
Pclass           int64
Name            object
Sex             object
Age            float64
SibSp            int64
Parch            int64
Ticket          object
Fare           float64
Cabin           object
Embarked        object
dtype: object

2. ๋ฐ์ดํ„ฐ ์ „์ฒด์ ์œผ๋กœ ์‚ดํŽด๋ณด๊ธฐ

  • ๋ฐ์ดํ„ฐ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ๋Š”์ง€

  • NA(๊ฒฐ์ธก์น˜)๊ฐ€ ์—†๋Š”์ง€

  • DATA SIZE๊ฐ€ ์ ์ ˆํ•œ์ง€(์ผ๋ฐ˜ํ™” ๊ฐ€๋Šฅ?)

## ๋ฐ์ดํ„ฐ ์ „์ฒด ์ •๋ณด๋ฅผ ์–ป๋Š” ํ•จ์ˆ˜ : .describe()

titanic_df.describe() # ์ˆ˜์น˜ํ˜• ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์š”์•ฝ๋งŒ์„ ์ œ๊ณต(Cabin์ด๋‚˜ Embarkation ์ •๋ณด๋Š” ์—†๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Œ)

PassengerId

Survived

Pclass

Age

SibSp

Parch

Fare

count

891.000000

891.000000

891.000000

714.000000

891.000000

891.000000

891.000000

mean

446.000000

0.383838

2.308642

29.699118

0.523008

0.381594

32.204208

std

257.353842

0.486592

0.836071

14.526497

1.102743

0.806057

49.693429

min

1.000000

0.000000

1.000000

0.420000

0.000000

0.000000

0.000000

25%

223.500000

0.000000

2.000000

20.125000

0.000000

0.000000

7.910400

50%

446.000000

0.000000

3.000000

28.000000

0.000000

0.000000

14.454200

75%

668.500000

1.000000

3.000000

38.000000

1.000000

0.000000

31.000000

max

891.000000

1.000000

3.000000

80.000000

8.000000

6.000000

512.329200

passenger id : ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ์„๊นŒ? survived : mean์„ ๋ณด๋‹ˆ ์ƒ๊ฐ๋ณด๋‹ค ์ฃฝ์€ ์‚ฌ๋žŒ์ด ๋งŽ๋‹ค pclass : ํฐ ์˜๋ฏธ๊ฐ€ ์žˆ์„๊นŒ? age : min = 0.42์ธ ์•„๊ธฐ๊ฐ€ ํƒ‘์Šนํ–ˆ๋‹ค sibsp : max = 8์ธ ๋Œ€๊ฐ€์กฑ์ด ํƒ‘์Šนํ–ˆ๋‹ค parch : max = 6์ธ ๋Œ€๊ฐ€์กฑ์ด ํƒ‘์Šนํ–ˆ๋‹ค fare : min = 0, max = 512 => mean = 32์ธ๋ฐ max = 512์ด๋ฏ€๋กœ outlier ์ผ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค.(outlier : ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋„์—์„œ ๋งŽ์ด ๋ฒ—์–ด๋‚œ ๋ฐ์ดํ„ฐ)

## ์ƒ๊ด€๊ณ„์ˆ˜ ํ™•์ธ!

titanic_df.corr()

PassengerId

Survived

Pclass

Age

SibSp

Parch

Fare

PassengerId

1.000000

-0.005007

-0.035144

0.036847

-0.057527

-0.001652

0.012658

Survived

-0.005007

1.000000

-0.338481

-0.077221

-0.035322

0.081629

0.257307

Pclass

-0.035144

-0.338481

1.000000

-0.369226

0.083081

0.018443

-0.549500

Age

0.036847

-0.077221

-0.369226

1.000000

-0.308247

-0.189119

0.096067

SibSp

-0.057527

-0.035322

0.083081

-0.308247

1.000000

0.414838

0.159651

Parch

-0.001652

0.081629

0.018443

-0.189119

0.414838

1.000000

0.216225

Fare

0.012658

0.257307

-0.549500

0.096067

0.159651

0.216225

1.000000

main_diagonal์€ ํ•ญ์ƒ 1 ๊ธˆ์•ก๊ณผ ๋“ฑ๊ธ‰์€ ๋ฐ˜๋น„๋ก€. ๋“ฑ๊ธ‰์ด ๋†’์„์ˆ˜๋ก ์ƒ์กด๋ฅ ์ด ๋†’์ง€ ์•Š์„๊นŒ?

โ˜… Correlation is NOT Causation

์ƒ๊ด€์„ฑ : A up, B up, ... ์ธ๊ณผ์„ฑ : A -> B

## ๊ฒฐ์ธก์น˜ ํ™•์ธ
## ๋น„์–ด์žˆ๋А์ง€๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๊ณ , ๋น„์–ด์žˆ๋Š” ๊ฒƒ์— ๋Œ€ํ•ด ์˜๋ฏธ ๋ถ€์—ฌ ๊ฐ€๋Šฅ

titanic_df.isnull().sum()
# Age, Cabin ,Embarked ์—์„œ ๊ฒฐ์ธก์น˜ ํ™•์ธ!
PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64

3. ๋ฐ์ดํ„ฐ์˜ ๊ฐœ๋ณ„ ์†์„ฑ ํŒŒ์•…ํ•˜๊ธฐ

  • ๊ฐ๊ฐ์˜ feature๊ฐ€ ๋ฌด์—‡์ธ์ง€

  • ํŠน์ • ๋ฐ์ดํ„ฐ๊ฐ€ ํŠน์ • column์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋Š” ์˜๋ฏธ

  • ์†์„ฑ์ด ์ ์ ˆํ•˜๊ฒŒ ๋งค์นญ๋˜์–ด ์žˆ๋Š”๊ฐ€ (์†์„ฑ์„ ๋ฐ”๊ฟ”์ค„ ํ•„์š”๊ฐ€ ์žˆ๋Š”๊ฐ€)

I. Survived Column

##  ์ƒ์กด์ž, ์‚ฌ๋ง์ž ๋ช…์ˆ˜๋Š”?

# titanic_df['Survived'].sum()
# True ์ธ ๊ฐœ์ˆ˜๋งŒ ์ถœ๋ ฅ

# ์ „์ฒด ์ถœ๋ ฅ
titanic_df['Survived'].value_counts()
0    549
1    342
Name: Survived, dtype: int64
## ์ƒ์กด์ž ์ˆ˜์™€ ์‚ฌ๋ง์ž ์ˆ˜๋ฅผ Barplot์œผ๋กœ ๊ทธ๋ ค๋ณด๊ธฐ sns.coutnplot()

sns.countplot(x='Survived', data=titanic_df) # ์นดํ…Œ๊ณ ๋ฆฌ ๋ณ„๋กœ ์นด์šดํŠธ ๋œ ๋ชจ์Šต์„ ์ถœ๋ ฅ
plt.show()

II. Pclass

# Pclass์— ๋”ฐ๋ฅธ ์ธ์› ํŒŒ์•…

titanic_df[['Pclass', 'Survived']].groupby(['Pclass']).count()

Survived

Pclass

1

216

2

184

3

491

# ์ƒ์กด์ž ์ธ์›?

titanic_df[['Pclass', 'Survived']].groupby(['Pclass']).sum()

Survived

Pclass

1

136

2

87

3

119

# ์ƒ์กด ๋น„์œจ?

titanic_df[['Pclass', 'Survived']].groupby(['Pclass']).mean() # sum / count

Survived

Pclass

1

0.629630

2

0.472826

3

0.242363

# ํžˆํŠธ๋งต ํ™œ์šฉ

sns.heatmap(titanic_df[['Pclass', 'Survived']].groupby(['Pclass']).mean())
plt.plot()
[]

III.Sex

titanic_df.groupby(['Sex', 'Survived'])['Survived'].count()
Sex     Survived
female  0            81
        1           233
male    0           468
        1           109
Name: Survived, dtype: int64
# sns.catplot

sns.catplot(x='Sex', col='Survived', kind='count', data=titanic_df)
plt.show()

IV. Age

Remind : ๊ฒฐ์ธก์น˜ ์กด์žฌ!

titanic_df.describe()['Age']
count    714.000000
mean      29.699118
std       14.526497
min        0.420000
25%       20.125000
50%       28.000000
75%       38.000000
max       80.000000
Name: Age, dtype: float64
## Survived 1, 0๊ณผ Age์˜ ๊ฒฝํ–ฅ์„ฑ
## figure (๋„๋ฉด) -> axis (ํ‹€) -> plot (๊ทธ๋ž˜ํ”„)

fig, ax = plt.subplots(1, 1, figsize=(10, 5)) # ๊ฐ€๋กœ 1๊ฐœ, ์„ธ๋กœ 1๊ฐœ, figsize
sns.kdeplot(x=titanic_df[titanic_df.Survived == 1]['Age'], ax=ax)
sns.kdeplot(x=titanic_df[titanic_df.Survived == 0]['Age'], ax=ax)

plt.legend(['Survived', 'Dead'])
plt.show()

Appendix I. Sex + Pclass vs Survived

sns.catplot(x='Pclass', y='Survived', hue='Sex', kind='point', data=titanic_df)
plt.show()

Apendix II. Age + Pclass

## Age graph with Pclass

titanic_df['Age'][titanic_df.Pclass == 1].plot(kind='kde')
titanic_df['Age'][titanic_df.Pclass == 2].plot(kind='kde')
titanic_df['Age'][titanic_df.Pclass == 3].plot(kind='kde')

plt.legend(['1st class', '2nd class', '3rd class'])
plt.show()

Titanic Data