๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [AI ์Šค์ฟจ 1๊ธฐ] 6์ฃผ์ฐจ DAY 4
  • ํ™•๋ฅ ์  ์‹๋ณ„ ๋ชจ๋ธ (Probabilistic discriminative model)
  • [Statistics 110] 4๊ฐ•- ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  (Conditional Probability)
  • ํฌํ•จ๋ฐฐ์ œ์˜ ์›๋ฆฌ ์ถ”๊ฐ€ ์„ค๋ช…
  • Independence
  • Newton-Pepys Problem(1693)
  • Conditional Probability

Was this helpful?

  1. 2021 TIL
  2. JAN

14 Thu

Previous15 FriNext13 Wed

Last updated 4 years ago

Was this helpful?

[AI ์Šค์ฟจ 1๊ธฐ] 6์ฃผ์ฐจ DAY 4

์ถœ์ฒ˜ :

ํ™•๋ฅ ์  ์‹๋ณ„ ๋ชจ๋ธ (Probabilistic discriminative model)

  • x๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ, ํด๋ž˜์Šค์˜ ํ™•๋ฅ ์„ x์— ๊ด€ํ•œ ํ•จ์ˆ˜๋กœ ๊ฐ€์ •ํ•˜๊ณ , ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ฐ”๋กœ ๊ตฌํ•˜๋Š” ๋ชจ๋ธ

  • ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€(Logistic regression) : ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•โœจ

    • ํด๋ž˜์Šค C1์˜ ์‚ฌํ›„ ํ™•๋ฅ  = ํŠน์„ฑ๋ฒกํ„ฐ ์˜ ์„ ํ˜•ํ•จ์ˆ˜๊ฐ€ logistic sigmoid ๋ฅผ ํ†ต๊ณผ ํ•จ์ˆ˜

      ์ด๋•Œ, ์ž…๋ ฅํ•จ์ˆ˜ x๋Œ€์‹  ๋น„์„ ํ˜• ๊ธฐ์ €ํ•จ์ˆ˜ ์‚ฌ์šฉํ•จ.

      ์œ„ ์‹์˜ logistic sigmoid ํ•จ์ˆ˜ :

    • ํด๋ž˜์Šค C2์˜ ์‚ฌํ›„ ํ™•๋ฅ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

    • ๊ฐ€ M์ฐจ์› ์ผ ๋•Œ, ๊ตฌํ•ด์•ผํ•  ํŒŒ๋ผ๋ฏธํ„ฐ w์˜ ๊ฐœ์ˆ˜๋Š” M

      ์…์„ฑ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ์—๋Š”, M(M+5)/2+1๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ตฌํ•ด์•ผํ•จ

      ์ด์— ๋ฐ˜๋ฉด, ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋Š” ํ›จ์”ฌ๋” ์ž‘์€ M์˜ linearํ•œ ๊ฐœ์ˆ˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ๊ตฌํ•ด๋„ ๋จ.

    • ์ตœ๋Œ€์šฐ๋„ํ•ด

      • ๋ฐ์ดํ„ฐ ์…‹ :

      • ์šฐ๋„ํ•จ์ˆ˜

      • ์Œ์˜ ๋กœ๊ทธ์šฐ๋„

        ๋ชจ์ˆ˜ ์ถ”์ •์„ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋ฉฐ, ์ด๋Š” ํฌ๋กœ์Šค ์—”ํŠธ๋กœํ”ผ ์—๋Ÿฌํ•จ์ˆ˜(cross entropy error function)โ—

      • ํฌ๋กœ์Šค ์—”ํŠธ๋กœํ”ผ(cross entropy error function)

        • ์ •๋ณด์ด๋ก ์—์„œ

          ์ด์‚ฐํ™•๋ฅ ๋ณ€์ˆ˜์˜ ๊ฒฝ์šฐ,

        • ์ผ๋ฐ˜์ ์œผ๋กœ ํฌ๋กœ์Šค ์—”ํŠธ๋กœํ”ผ๊ฐ€ ์ตœ์†Œํ™”๋  ๋•Œ, ๋‘ ํ™•๋ฅ ๋ถ„ํฌ์˜ ์ฐจ์ด๊ฐ€ ์ตœ์†Œํ™”

          ๋”ฐ๋ผ์„œ, ์—๋Ÿฌํ•จ์ˆ˜ ์ตœ์†Œํ™” = ์šฐ๋„ ์ตœ๋Œ€ํ™” = ๋ชฉํ‘œ ๋ณ€์ˆ˜(๋ถ„ํฌ)์™€ ์˜ˆ์ธก๊ฐ’ ๋ถ„ํฌ ์ฐจ์ด ์ตœ์†Œํ™”โ—

      • ์—๋Ÿฌํ•จ์ˆ˜ w์˜ gradient

        ์ด๋•Œ, ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ.

        ๋”ฐ๋ผ์„œ, ์ด๋ฏ€๋กœ

        ์ „์ฒด์ ์ธ ์—๋Ÿฌ ํ•จ์ˆ˜ w์˜ gradient๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

  • ๋‹ค์ค‘ ํด๋ž˜์Šค ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€(Multiclass logistic regression)

    • ๋˜๋Š” ์†Œํ”„ํŠธ๋งฅ์Šค ํšŒ๊ท€(Softmax regression) ๋ผ๊ณ  ํ•จ.

      • ์ƒ˜ํ”Œ x๊ฐ€ ์ฃผ์–ด์ง€๋ฉด ์†Œํ”„ํŠธ๋งฅ์Šค ํšŒ๊ท€ ๋ชจ๋ธ์ด ๊ฐ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ์ ์ˆ˜ ๊ณ„์‚ฐ

      • ์ด์— ์†Œํ”„ํŠธ๋งฅ์Šค ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•ด์„œ ๊ฐ ํด๋ž˜์Šค์˜ ํ™•๋ฅ  ์ถ”์ •, ํ™•๋ฅ ์ด ๊ฐ€์žฅ ํฐ ํด๋ž˜์Šค ์„ ํƒ(๋ชจ๋“  ํ™•๋ฅ ์˜ ํ•ฉ=1)

    • ์šฐ๋„ํ•จ์ˆ˜

      • ํŠน์„ฑ ๋ฒกํ„ฐ ๋ฅผ ์œ„ํ•œ ๋ชฉํ‘œ๋ฒกํ„ฐ ๋Š” ํด๋ž˜์Šค์— ํ•ด๋‹นํ•˜๋Š” ํ•˜๋‚˜์˜ ์›์†Œ๋งŒ 1(๋‚˜๋จธ์ง€ 0)์ธ 1-of-k ์ธ์ฝ”๋”ฉ ๋ฐฉ๋ฒ•์œผ๋กœ ํ‘œํ˜„

        ์ด๋ฉฐ,

        : ๋ฅผ ์›์†Œ๋กœ ๊ฐ–๋Š” N x K ํฌ๊ธฐ์˜ ํ–‰๋ ฌ

    • ์Œ์˜ ๋กœ๊ทธ ์šฐ๋„

      ์œ„์˜ ์šฐ๋„ํ•จ์ˆ˜๋ฅผ ์Œ์˜ ๋กœ๊ทธ๋ฅผ ์ทจํ•˜๋ฉด,

      • ์—๋Ÿฌํ•จ์ˆ˜ ์ตœ์†Œํ™” โ†’ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ตฌํ•˜๊ธฐ(์— ๋Œ€ํ•œ gradient)

        ํ•˜๋‚˜์˜ ์ƒ˜ํ”Œ์— ๋Œ€ํ•œ ์—๋Ÿฌ์— ๋Œ€ํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ์ •์˜ํ•˜๋ฉด,

        ์— ๋Œ€ํ•œ gradient

        ํ’€์ด๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ

        ๊ฒฐ๊ณผ์ ์œผ๋กœ, ๋‹ค์Œ๊ณผ ๊ฐ™์Œโ—

โœจ๏ธ ๊ณต๋ถ€ํ•˜๋ฉด์„œ ์ฐธ๊ณ ํ•œ ์‚ฌ์ดํŠธ

[Statistics 110] 4๊ฐ•- ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  (Conditional Probability)

Present Part [4 / 34]

ํฌํ•จ๋ฐฐ์ œ์˜ ์›๋ฆฌ ์ถ”๊ฐ€ ์„ค๋ช…

P(A1โ€‹โ‹ƒโ‹ฏโ‹ƒAKโ€‹)=(nโˆ’k)!n! P(A_1โ€‹โ‹ƒโ‹ฏโ‹ƒA_Kโ€‹)={ (n-k)! \over n!} P(A1โ€‹โ€‹โ‹ƒโ‹ฏโ‹ƒAKโ€‹โ€‹)=n!(nโˆ’k)!โ€‹

n๊ฐœ ์ค‘ k๊ฐœ์˜ ์นด๋“œ์— ๋Œ€ํ•ด์„œ ์–ด๋–ค ์ˆ˜ m์„ ๊ฐ€์ง„ ์นด๋“œ๊ฐ€ m๋ฒˆ์งธ์— ์žˆ์„ ํ™•๋ฅ ์€ ์œ„ ์‹๊ณผ ๊ฐ™๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์—ฌ๊ธฐ์„œ n๊ฐœ ์ค‘ k๊ฐœ์˜ ์นด๋“œ์— ๋Œ€ํ•ด์„œ ์ ์šฉํ•ด์•ผ ํ•˜๋ฏ€๋กœโ€‹โ€‹

(nk)=n!(nโˆ’k)!k! {n \choose k} = { n! \over (n-k)!k! } (knโ€‹)=(nโˆ’k)!k!n!โ€‹

๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‹์ด ๊ตฌํ•ด์ง€๋ฉฐ ์ด๋ฅผ ๊ณฑํ•ด 1k! {1 \over k!} k!1โ€‹๋งŒ ๋‚จ๊ฒŒ ๋œ๋‹ค.

P(โ‹ƒj=1nAj)=1โˆ’12!+โ‹ฏ+(โˆ’1)n+11n! P( \bigcup_{j=1}^n A_j) = 1 - {1 \over 2!} + \cdots + (-1)^{n+1}{1 \over n!}P(โ‹ƒj=1nโ€‹Ajโ€‹)=1โˆ’2!1โ€‹+โ‹ฏ+(โˆ’1)n+1n!1โ€‹

P(noย ย match)=P(โˆฉj=1nAjc)=1โˆ’1+12!โˆ’13!+โ‹ฏ+(โˆ’1)n1n! P(no \ \ match) = P( \cap _{j=1}^n A_j^c) = 1-1+{1 \over 2!} - {1 \over 3!} + \cdots + (-1)^n {1 \over n!}P(noย ย match)=P(โˆฉj=1nโ€‹Ajcโ€‹)=1โˆ’1+2!1โ€‹โˆ’3!1โ€‹+โ‹ฏ+(โˆ’1)nn!1โ€‹ โ‰ˆ โ€‹ โ€‹1e {1 \over e} e1โ€‹ => ํ…Œ์ผ๋Ÿฌ ์‹œ๋ฆฌ์ฆˆ

Independence

์ •์˜

P(AโˆฉB)=P(A)P(B) P(AโˆฉB) = P(A)P(B)P(AโˆฉB)=P(A)P(B)์ด ์„ฑ๋ฆฝํ•  ๋•Œ, ์‚ฌ๊ฑด A์™€ B๋Š” ๋…๋ฆฝ์ด๋‹ค. A๊ฐ€ ์ผ์–ด๋‚ฌ๋‹ค๊ณ  ํ•ด์„œ B๊ฐ€ ์ผ์–ด๋‚  ์ง€์— ๋Œ€ํ•œ ์ด์•ผ๊ธฐ๋Š” ํ•˜์ง€ ๋ชปํ•œ๋‹ค. (๋ฐฐ๋ฐ˜๊ณผ์˜ ์ฐจ์ด์  => ๋ฐฐ๋ฐ˜ : A๊ฐ€ ์ผ์–ด๋‚ฌ๋‹ค๋ฉด B๋Š” ์ผ์–ด๋‚  ์ˆ˜๊ฐ€ ์—†๋‹ค.)

A, B, C์˜ ๋…๋ฆฝ

  • P(AโˆฉBโˆฉC)=P(A)P(B)P(C)P(AโˆฉBโˆฉC)= P(A)P(B)P(C)P(AโˆฉBโˆฉC)=P(A)P(B)P(C)

  • P(AโˆฉB)=P(A)P(B),P(BโˆฉC)=P(B)P(C),P(BโˆฉC)=P(B)P(C),P(CโˆฉA)=P(C)P(A),P(CโˆฉA)=P(C)P(A)P(AโˆฉB)=P(A)P(B), P(B \cap C) = P(B)P(C),P(BโˆฉC)=P(B)P(C), P(C \cap A) = P(C)P(A),P(CโˆฉA)=P(C)P(A)P(AโˆฉB)=P(A)P(B),P(BโˆฉC)=P(B)P(C),P(BโˆฉC)=P(B)P(C),P(CโˆฉA)=P(C)P(A),P(CโˆฉA)=P(C)P(A)

  • ์ „์ฒด ๋…๋ฆฝ๊ณผ ์Œ์œผ๋กœ ๋…๋ฆฝ์„ ํ™•์ธํ•ด์•ผ ์„ธ ์‚ฌ๊ฑด์ด ๋…๋ฆฝ์ž„์„ ํ™•์‹ ํ•  ์ˆ˜ ์žˆ๋‹ค.

Newton-Pepys Problem(1693)

๊ณต์ •ํ•œ ์ฃผ์‚ฌ์œ„๋ฅผ ๊ฐ–๊ณ  ์žˆ์„ ๋•Œ, ๋‹ค์Œ ์ค‘ ์–ด๋–ค ๊ฒฝ์šฐ๊ฐ€ ๋ฐœ์ƒํ•  ํ™•๋ฅ ์ด ๊ฐ€์žฅ ๋†’์€๊ฐ€?

a) 6๊ฐœ์˜ ์ฃผ์‚ฌ์œ„ ์ค‘์—์„œ ์ ์–ด๋„ ํ•œ ๊ฐœ๊ฐ€ โ€˜6โ€™์ด ๋‚˜์˜จ ๊ฒฝ์šฐ

b) 12๊ฐœ์˜ ์ฃผ์‚ฌ์œ„ ์ค‘์—์„œ ์ ์–ด๋„ ๋‘ ๊ฐœ๊ฐ€ โ€˜6โ€™์ด ๋‚˜์˜จ ๊ฒฝ์šฐ

c) 18๊ฐœ์˜ ์ฃผ์‚ฌ์œ„ ์ค‘์—์„œ ์ ์–ด๋„ ์„ธ ๊ฐœ๊ฐ€ โ€˜6โ€™์ด ๋‚˜์˜จ ๊ฒฝ์šฐ

โ†’ ๋‹ต์€ (a)

P(A)=1โˆ’(56)6โ€‹โ€‹โ‰ˆ0.665 P(A)=1โˆ’({5 \over 6})^6โ€‹โ€‹ \approx 0.665P(A)=1โˆ’(65โ€‹)6โ€‹โ€‹โ‰ˆ0.665

P(B)=1โˆ’ P(B) = 1 -P(B)=1โˆ’(6์ด ํ•œ๋ฒˆ๋„ ์•ˆ๋‚˜์˜ฌ ํ™•๋ฅ  + 6์ด ๋”ฑ ํ•œ๋ฒˆ ๋‚˜์˜ฌ ํ™•๋ฅ ) =1โˆ’{(56)12+16ร—(56)11}โ‰ˆ0.619 = 1โˆ’\{( {\frac {5}{6}) ^{12}} + \frac{1}{6} \times (\frac{5}{6}) ^{11} \} \approx 0.619=1โˆ’{(65โ€‹)12+61โ€‹ร—(65โ€‹)11}โ‰ˆ0.619

P(C)=1โˆ’โˆ‘k=02P(C)=โ€‹โ€‹(18k)(16)k(56)18โˆ’kโ‰ˆ0.597P(C) = 1- {\displaystyle \sum _{k=0} ^{2}}P(C)=โ€‹โ€‹{ {18\choose k}(\frac{1}{6})^k (\frac {5}{6})^{18-k}} \approx 0.597P(C)=1โˆ’k=0โˆ‘2โ€‹P(C)=โ€‹โ€‹(k18โ€‹)(61โ€‹)k(65โ€‹)18โˆ’kโ‰ˆ0.597

โˆด (a)๊ฐ€ ๊ฐ€์žฅ ๋ฐœ์ƒํ•  ํ™•๋ฅ ์ด ๋†’๋‹ค.

Conditional Probability

์ƒˆ๋กœ์šด ์ •๋ณด๋ฅผ ์–ป์—ˆ์„ ๋•Œ, ๊ธฐ์กด์˜ โ€˜๋ฏฟ์Œ/๋ถˆํ™•์‹ค์„ฑ(uncertainty)โ€™์„ ์–ด๋–ป๊ฒŒ ์—…๋ฐ์ดํŠธํ•˜๋Š”๊ฐ€?

์ •์˜

P(AโˆฃB)=P(AโˆฉB)P(B)P(AโˆฃB)=โ€‹P(B)โ€‹โ€‹P(AโˆฉB)โ€‹โ€‹,(P(B)>0P(B)>0์ด๋‹ค) P(A|B) = {\Large \frac{P(A \cap B)}{P(B)} } \\ P(AโˆฃB)=โ€‹P(B)โ€‹โ€‹P(AโˆฉB)โ€‹โ€‹ , (P(B) >0 P(B)>0์ด๋‹ค) P(AโˆฃB)=P(B)P(AโˆฉB)โ€‹P(AโˆฃB)=โ€‹P(B)โ€‹โ€‹P(AโˆฉB)โ€‹โ€‹,(P(B)>0P(B)>0์ด๋‹ค)

์ง๊ด€์  ์ ‘๊ทผ 1) '์กฐ์•ฝ๋Œ ์„ธ๊ณ„๊ด€'

์ง๊ด€์  ์ ‘๊ทผ 2) '๋นˆ๋„ํ•™ํŒŒ(Frequentist) ์„ธ๊ณ„๊ด€'

๊ฐ™์€ ์‹คํ—˜์„ ๋ฌดํ•œ ๋ฒˆ ๋ฐ˜๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค๋ฉด,

์ •๋ฆฌ

  1. P(AโˆฉB)=P(B)P(AโˆฃB)=P(A)P(BโˆฃA) P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)P(AโˆฉB)=P(B)P(AโˆฃB)=P(A)P(BโˆฃA)

  2. P(A1,A2,...An)=P(A1)P(A2โˆฃA1)P(A3โˆฃA1,A2)...P(AnโˆฃA1,...,Anโˆ’1) P(A_1, A_2, ... A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1,A_2) ... P(A_n| A_1,..., A_{n-1})P(A1โ€‹,A2โ€‹,...Anโ€‹)=P(A1โ€‹)P(A2โ€‹โˆฃA1โ€‹)P(A3โ€‹โˆฃA1โ€‹,A2โ€‹)...P(Anโ€‹โˆฃA1โ€‹,...,Anโˆ’1โ€‹)

  3. P(AโˆฃB)=P(BโˆฃA)P(A)P(B)P(AโˆฃB)=โ€‹P(B)โ€‹โ€‹P(BโˆฃA)P(A) P(A |B) = {\Large \frac {P(B|A)P(A)}{P(B)} } \\ P(AโˆฃB)=โ€‹P(B)โ€‹โ€‹P(BโˆฃA)P(A)P(AโˆฃB)=P(B)P(BโˆฃA)P(A)โ€‹P(AโˆฃB)=โ€‹P(B)โ€‹โ€‹P(BโˆฃA)P(A)โ€‹โ€‹ โ†’ ์ด๋ฅผ ๋ฒ ์ด์ฆˆ์˜ ์ •๋ฆฌ(Bayesโ€™ Theorem)๋ผ ํ•œ๋‹ค.

https://github.com/sujiny-tech/k-digital-training-AI-dev/blob/main/Machine-Learning-basics/Linear%20Models%20for%20Classification.md