7 Fri

๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ

Functional API ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ

  • Functional API๊ฐ€ ์ถฉ๋ถ„ํžˆ ์‰ฌ์šด๋ฐ Sequential์ด ๋„ˆ๋ฌด ์‰ฝ๋‹ค๋ณด๋‹ˆ Functional API๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ์ธ์‹์ด ์ƒ๊ธด๋‹ค.

  • ์šฐ๋ฆฌ ๊ฐ•์˜์—์„œ๋Š” Sequential์„ ๊ฑฐ์˜ ์“ฐ์ง€ ์•Š์„ ๊ฒƒ

Sequential vs Functional API

  • ์ผ๋ฐ˜์ ์œผ๋กœ Seq๋ฅผ ์ด์šฉํ•˜๋ฉด ๋ชจ๋ธ์„ ์‰ฝ๊ฒŒ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Œ

  • ํ•˜์ง€๋งŒ Keras ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ์€ Func์ž„.

  • ์ฒ˜์Œ๋ถ€ํ„ฐ Func๋กœ ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ™œ์šฉ ๊ธฐ๋ฒ•์„ ์•ˆ ๋’ค์— Seq๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•จ

Sequential

# Sequential Model์„ ์ด์šฉํ•˜์—ฌ Keras ๋ชจ๋ธ ์ƒ์„ฑ 
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import Sequential

INPUT_SIZE = 28

model = Sequential([
    Flatten(input_shape=(INPUT_SIZE, INPUT_SIZE)),
    Dense(100, activation='relu'),
    Dense(30, activation='relu'),
    Dense(10, activation='softmax')
])

model.summary()

model1 = Sequential()
model1.add(Flatten(input_shape=(INPUT_SIZE, INPUT_SIZE)))
model1.add(Dense(100, activation='relu'))
model1.add(Dense(30, activation='relu'))
model1.add(Dense(10, activation='softmax'))

model1.summary()
  • ์ฒ˜์Œ์—๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด model.add ๋ฅผ ์‚ฌ์šฉํ–ˆ์ง€๋งŒ ์š”์ฆ˜์€ Sequential ์•ˆ์— ๋ฆฌ์ŠคํŠธ ํ˜•ํƒœ๋กœ ๋‹ด๋Š”๋‹ค

  • ์ด ๋•Œ Sequential์€ ์ง€๊ธˆ ์ž…๋ ฅ์ด input layer์—์„œ ์˜ค๋Š” ์ž…๋ ฅ์ธ์ง€ other layer์—์„œ ์˜ค๋Š” ์ž…๋ ฅ์ธ์ง€ ์•Œ์ง€ ๋ชปํ•œ๋‹ค.

    • ๋”ฐ๋ผ์„œ ์ด ๋•Œ Flatten ๋‚ด๋ถ€์— input_shape ๋กœ ์ธ์ž๋ฅผ ๋ฐ›์œผ๋ฉด์„œ input layer์—์„œ ์˜ค๋Š” ์ธ์ž์ธ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค

Functional API

  • ๋ฐ˜๋ฉด์— Functional API๋Š” ์ฝ”๋“œ ํ•œ ์ค„์„ ๋” ์“ฐ๋Š” ๋Œ€์‹  Input layer์˜ ์กด์žฌ๋ฅผ ๋ช…์‹œํ•œ๋‹ค.

Functional API ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ - 01

Functional API์˜ ํ•„์š”์„ฑ

  • ์•ž ์ฒ˜๋ฆฌ ๋กœ์ง์˜ ๊ฒฐ๊ณผ๊ณผ ์ด์–ด์ง€๋Š” ์ฒ˜๋ฆฌ ๋กœ์ง์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์ฃผ์–ด์ง€๋Š” Chain ํ˜•ํƒœ์˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ตฌํ˜„ ๋กœ์ง์— ์ ํ•ฉ

conv_out_01=Conv2D(filter=32, kernel_size = 3)(input_tensor)

filter=32, kernel_size = 3

  • Functional API๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ

input tensor

  • Functional API์— ์ž…๋ ฅ๋˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ’

=> ํ•˜์ดํผ ํŒŒ๋ฆฌ๋ฏธํ„ฐ์™€ ์ธ์ž๋ฅผ ๋”ฐ๋กœ ๊ตฌ๋ถ„ํ•ด์„œ ๋ฐ›๋Š” ๊ตฌ์กฐ์ธ ๋“ฏ ์‹ถ๋‹ค

Sequential์€ Functional API๋ฅผ ์ข€ ๋” ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ

Functional API ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ - 02

Customํ•œ Dense Layer ์ƒ์„ฑ

outputs = CustomDense(10)(inputs)

  • 10 ์€ init ํ•จ์ˆ˜๋กœ ์ „๋‹ฌ๋˜์–ด self.units == 10 ์ด ๋œ๋‹ค.

  • inputs ๋Š” call ํ•จ์ˆ˜๋กœ ์ „๋‹ฌ๋œ๋‹ค

    • ์ด๊ฒƒ์€ CustomDense๊ฐ€ tf.keras.layers.layer ๋ฅผ ์ƒ์†๋ฐ›์•„์„œ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ

    • __call__ ๋˜๋˜ ๋ฉ”์„œ๋“œ์™€ ๋™์ผํ•œ ๊ธฐ๋Šฅ์„ ํ•œ๋‹ค

  • callable ์ธ์ž ์ž…๋ ฅ ๋ถ€๋ถ„์„ ๋ณ„๋„๋กœ ์ˆ˜ํ–‰ํ•ด๋„ ๋ฌด๋ฐฉํ•˜๋‹ค

Sequential Model์˜ ์›๋ฆฌ

์œ„์™€ ๊ฐ™์€ Seq๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž. ์ด๋Š” ์•„๋ž˜ ์ฝ”๋“œ์ฒ˜๋Ÿผ ๊ตฌํ˜„์ด ๋˜์–ด์žˆ๋‹ค

  • ์ฒซ ๋ ˆ์ด์–ด(index == 0)๋Š” callable_input ์„ ์ž๊ธฐ ์ž์‹ ์œผ๋กœ ์„ค์ •ํ•˜๋ฉฐ ๊ทธ ๋‹ค์Œ ๋ ˆ์ด์–ด๋ถ€ํ„ฐ layer(callable_inputs) ๋กœ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜์žˆ๋‹ค.

  • ์ด ์ฝ”๋“œ๋Š” ๊ฐ„๋‹จํ•œ ๊ตฌ์กฐ์ด๊ณ  ์‹ค์ œ๋กœ๋Š” ์กฐ๊ธˆ ๋” ๋ณต์žกํ•œ ์ฒ˜๋ฆฌ๋“ค์ด ์žˆ๋‹ค.

  • ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ Seq ์—ญ์‹œ Func API๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ Live Coding ์œผ๋กœ ๊ตฌํ˜„ ์ •๋ฆฌ - 01

์‹ค์Šต

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ Live Coding ์œผ๋กœ ๊ตฌํ˜„ ์ •๋ฆฌ - 02

์‹ค์Šต

Keras Callback ๊ฐœ์š”

๋Œ€ํ‘œ์ ์œผ๋กœ ํ•™์Šต๋ฅ ์„ ๋™์ ์œผ๋กœ ์กฐ์ •ํ•˜๊ณ  ์‹ถ์„ ๋•Œ ์‚ฌ์šฉํ•œ๋‹ค.

  • ๊ทธ ์ด์™ธ์—๋„ Epoch๊ฐ€ ๋Œ์•„๊ฐˆ ๋•Œ ๋™์ ์œผ๋กœ ๋ฌด์–ธ๊ฐ€๋ฅผ ๊ฑด๋“œ๋ฆฌ๊ณ  ์‹ถ์„ ๋•Œ ์‚ฌ์šฉํ•œ๋‹ค

๋“ฑ๋ก๋  ์ˆ˜ ์žˆ๋Š” Callback ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค

  • ModelCheckpoint()

  • ReduceLROnPlateau()

  • LearningRateScheduler()

  • EarlyStopping()

  • TensorBoard()

Keras Callback ์‹ค์Šต - ModelCheckpoint, ReduceLROnPlateau, EarlyStopping

ModelCheckpoint

  • ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๋Š” ๊ฒƒ

    • ๋ชจ๋ธ์ด ๋Œ์•„๊ฐ€๋Š”๋ฐ 6์‹œ๊ฐ„์ด ๊ฑธ๋ฆฐ๋‹ค๊ณ  ํ•˜๋ฉด ๋งค๋ฒˆ ๋ชจ๋ธ์„ ๋Œ๋ฆด ์ˆ˜ ์—†์œผ๋‹ˆ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ฒŒ ๋œ๋‹ค

    • ์ด ๋•Œ ํ•™์Šต์ด ๋๋‚˜๊ณ  ๋ชจ๋ธ์„ ์ €์žฅํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ ์ฃผ๊ธฐ์ ์œผ๋กœ ํ•˜๊ฒŒ ๋œ๋‹ค

    • ์™œ๋ƒํ•˜๋ฉด, ๋ชจ๋ธ์ด ๋Œ๋‹ค๊ฐ€ ๋ฆฌ์†Œ์Šค ๋ถ€์กฑ์œผ๋กœ ์ข…๋ฃŒ๋  ์ˆ˜๋„ ์žˆ๊ณ  ํ•™์Šต์ด ๋๋‚œ ์‹œ์ ์ด ๋ชจ๋ธ์ด ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ๋‚ด๋Š” ์ง€์ ์„ ์ง€๋‚ฌ์„ ์ˆ˜๋„ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค

  • ํŠน์ • ์กฐ๊ฑด์— ๋งž์ถฐ์„œ ๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ์ €์žฅ

  • filepath: filepath๋Š” (on_epoch_end์—์„œ ์ „๋‹ฌ๋˜๋Š”) epoch์˜ ๊ฐ’๊ณผ logs์˜ ํ‚ค๋กœ ์ฑ„์›Œ์ง„ ์ด๋ฆ„ ํ˜•์‹ ์˜ต์…˜์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Œ. ์˜ˆ๋ฅผ ๋“ค์–ด filepath๊ฐ€ weights.{epoch:02d}-{val_loss:.2f}.hdf5๋ผ๋ฉด, ํŒŒ์ผ ์ด๋ฆ„์— ์„ธ๋Œ€ ๋ฒˆํ˜ธ์™€ ๊ฒ€์ฆ ์†์‹ค์„ ๋„ฃ์–ด ๋ชจ๋ธ์˜ ์ฒดํฌํฌ์ธํŠธ๊ฐ€ ์ €์žฅ

  • monitor: ๋ชจ๋‹ˆํ„ฐํ•  ์ง€ํ‘œ(loss ๋˜๋Š” ํ‰๊ฐ€ ์ง€ํ‘œ)

  • save_best_only: ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ชจ๋ธ๋งŒ ์ €์žฅํ•  ์—ฌ๋ถ€

    • 100๊ฐœ๋ฅผ ๋‹ค ์ €์žฅํ•ด๋‘๋ฉด ์šฉ๋Ÿ‰์ด ๋„ˆ๋ฌด ํฌ๋‹ˆ๊นŒ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์˜ ๋ชจ๋ธ๋งŒ ์ €์žฅํ• ์ง€์— ๋Œ€ํ•œ ์—ฌ๋ถ€

  • save_weights_only: Weights๋งŒ ์ €์žฅํ•  ์ง€ ์—ฌ๋ถ€

    • ๋ณดํ†ต์€ ๋ชจ๋ธ๋ณด๋‹ค weights๋งŒ์„ ์ €์žฅํ•˜๋Š” ๊ฒƒ์ด ์ข‹๋‹ค

    • True๋กœ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Œ

  • mode: {auto, min, max} ์ค‘ ํ•˜๋‚˜. monitor ์ง€ํ‘œ๊ฐ€ ๊ฐ์†Œํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ min, ์ฆ๊ฐ€ํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ max, auto๋Š” monitor ์ด๋ฆ„์—์„œ ์ž๋™์œผ๋กœ ์œ ์ถ”.

    • val-loss๋‚˜ val-accuracy์˜ ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” loss๊ฐ™์€ ๊ฒฝ์šฐ๋Š” ์ž‘์„ ์ˆ˜๋ก ์ข‹๊ณ  accuracy๋Š” ํด์ˆ˜๋ก ์ข‹๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์ง€ํ‘œ์— ๋งž์ถ”์–ด max, min, auto๋กœ ์„ค์ •

  • period : ๋ช‡ epoch๋งˆ๋‹ค ์ €์žฅํ• ์ง€

ReduceLROnPlateau

  • Plateau๋Š” ์•ˆ์ • ๊ธฐ์— ๋‹ฌํ•˜๋‹ค ๋ผ๋Š” ๋œป

    • OnPlateau : ์•ˆ์ •์ ์ด๊ฒŒ ๋ ๋•Œ๊นŒ์ง€

    • LR : ์—๋Ÿฌ๋ฅผ

    • Reduce : ๊ฐ์†Œ์‹œ์ผœ๋ผ

    • ๋ผ๋Š” ๋œป

  • ํŠน์ • epochs ํšŸ์ˆ˜๋™์•ˆ ์„ฑ๋Šฅ์ด ๊ฐœ์„  ๋˜์ง€ ์•Š์„ ์‹œ Learning rate๋ฅผ ๋™์ ์œผ๋กœ ๊ฐ์†Œ ์‹œํ‚ด

  • monitor: ๋ชจ๋‹ˆํ„ฐํ•  ์ง€ํ‘œ(loss ๋˜๋Š” ํ‰๊ฐ€ ์ง€ํ‘œ)

  • factor: ํ•™์Šต ์†๋„๋ฅผ ์ค„์ผ ์ธ์ˆ˜. new_lr = lr * factor

  • patience: Learing Rate๋ฅผ ์ค„์ด๊ธฐ ์ „์— monitorํ•  epochs ํšŸ์ˆ˜.

  • mode: {auto, min, max} ์ค‘ ํ•˜๋‚˜. monitor ์ง€ํ‘œ๊ฐ€ ๊ฐ์†Œํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ min, ์ฆ๊ฐ€ํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ max, auto๋Š” monitor ์ด๋ฆ„์—์„œ ์œ ์ถ”.

EarlyStopping

  • ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ์˜ค๋ฅ˜๋Š” ์ค„์ง€๋งŒ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ์˜ค๋ฅ˜๋Š” ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์–ด๋А ์ •๋„์˜ ํ•™์Šต์ด ์ง„ํ–‰๋˜๋ฉด ๋ฉˆ์ถ”๋Š” ํ•จ์ˆ˜

  • ํŠน์ • epochs ๋™์•ˆ ์„ฑ๋Šฅ์ด ๊ฐœ์„ ๋˜์ง€ ์•Š์„ ์‹œ ํ•™์Šต์„ ์กฐ๊ธฐ์— ์ค‘๋‹จ

  • monitor: ๋ชจ๋‹ˆํ„ฐํ•  ์ง€ํ‘œ(loss ๋˜๋Š” ํ‰๊ฐ€ ์ง€ํ‘œ)

  • patience: Early Stopping ์ ์šฉ ์ „์— monitorํ•  epochs ํšŸ์ˆ˜.

  • mode: {auto, min, max} ์ค‘ ํ•˜๋‚˜. monitor ์ง€ํ‘œ๊ฐ€ ๊ฐ์†Œํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ min, ์ฆ๊ฐ€ํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ max, auto๋Š” monitor ์ด๋ฆ„์—์„œ ์œ ์ถ”.

๋ณดํ†ต์€ ํ•˜๋‚˜์”ฉ ์“ฐ์ง€ ์•Š๊ณ  ๋ชจ๋‘ ํ•œ๊บผ๋ฒˆ์— ๋‹ค ์“ด๋‹ค.

  • model.fit(callbacks=[]) ๋กœ callback ํ•จ์ˆ˜๋“ค์„ ์ ์šฉ์‹œ์ผœ์ค€ ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค

Numpy array์™€ Tensor ์ฐจ์ด, ๊ทธ๋ฆฌ๊ณ  fit() ๋ฉ”์†Œ๋“œ ์ƒ์„ธ ์„ค๋ช…

Numpy ํŠน์ง•

  • SIMD, Single Instruction Multiple Data ๊ธฐ๋ฐ˜์œผ๋กœ ์ˆ˜ํ–‰์†๋„๋ฅผ ์ตœ์ ํ™” ํ•  ์ˆ˜ ์žˆ๊ณ  ๋งค์šฐ ๋น ๋ฅด๊ฒŒ ๋Œ€๋Ÿ‰ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์น˜ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค

    • simd๋Š” ๋ช…๋ น ํ•œ๋ฒˆ์— ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ฒ˜๋ฆฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป

  • ๋„˜ํŒŒ์ด๊ฐ€ ์—†์—ˆ๋‹ค๋ฉด ํŒŒ์ด์ฌ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ์šด์šฉ์€ ๋ถˆ๊ฐ€๋Šฅ

SIMD

  • ๋ณ‘๋ ฌ ํ”„๋กœ์„ธ์„œ์˜ ํ•œ ์ข…๋ฅ˜๋กœ, ํ•˜๋‚˜์˜ ๋ช…๋ น์–ด๋กœ ์—ฌ๋Ÿฌ๊ฐœ์˜ ๊ฐ’์„ ๋™์‹œ์— ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ์‹

  • ๋น„๋””์˜ค ๊ฒŒ์ž„, ์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค, HPC, High Performance Computing ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ

Numpy Array vs Tensor

Numpy

  • Numpy๋Š” GPU๋ฅผ ์ง€์›ํ•˜์ง€ ์•Š์Œ

  • ๋ณด๋‹ค ๋ฒ”์šฉ์ ์ธ ์˜์—ญ(์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ, ์ž์—ฐ๊ณผํ•™/๊ณตํ•™)์—์„œ ์ฒ˜๋ฆฌ

Tensor

  • Tensor๋Š” CPU์™€ GPU๋ฅผ ๋ชจ๋‘ ์ง€์›ํ•œ๋‹ค

    • ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต์€ CPU SIMD ๊ธฐ๋ฐ˜์˜ Numpy๋กœ๋Š” ๊ฐ๋‹นํ•  ์ˆ˜ ์—†์„ ์ •๋„์˜ ๋งŽ์€ ์—ฐ์‚ฐ์ด ํ•„์š”

    • ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต์„ ์œ„ํ•ด GPU๊ฐ€ ํ•„์š”

  • ๋”ฅ๋Ÿฌ๋‹ ์ „์šฉ์˜ ๊ธฐ๋Šฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ

  • Tensorflow/Keras, Pytorch ๋“ฑ์˜ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ ๋ณ„๋กœ ๊ธฐ๋Šฅ์ ์ธ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์ถ”๊ฐ€ ๊ธฐ๋Šฅ๋“ค์ด ์žˆ์Œ

  • ์ตœ๊ทผ ์ถ”์„ธ๋Š” Numpy์˜ ๋ฒ”์šฉ์ ์ธ ์˜์—ญ๊นŒ์ง€ ์ฒ˜๋ฆฌ ์˜์—ญ์„ ํ™•์ถฉํ•˜๊ณ  ์žˆ์Œ

๋ชจ๋ธ

  • ๋ชจ๋ธ์— ์ž…๋ ฅ๋˜๋Š” ์ธ์ž๋Š” np.array ์ด๋‹ค.

  • ์ด ๋•Œ ๋ชจ๋ธ์˜ Input layer์—์„œ np -> tensor๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

  • ๋”ฐ๋ผ์„œ Flatten layer์—์„œ์˜ ์ž…๋ ฅ์€ ์ด๋ฏธ tensor์ด๋‹ค.

Last updated

Was this helpful?