๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
  • Functional API ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ
  • Functional API ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ - 01
  • Functional API ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ - 02
  • Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ Live Coding ์œผ๋กœ ๊ตฌํ˜„ ์ •๋ฆฌ - 01
  • Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ Live Coding ์œผ๋กœ ๊ตฌํ˜„ ์ •๋ฆฌ - 02
  • Keras Callback ๊ฐœ์š”
  • Keras Callback ์‹ค์Šต - ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
  • Numpy array์™€ Tensor ์ฐจ์ด, ๊ทธ๋ฆฌ๊ณ  fit() ๋ฉ”์†Œ๋“œ ์ƒ์„ธ ์„ค๋ช…

Was this helpful?

  1. 2021 TIL
  2. MAY

7 Fri

๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ

Functional API ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ ๋งŒ๋“ค๊ธฐ

  • Functional API๊ฐ€ ์ถฉ๋ถ„ํžˆ ์‰ฌ์šด๋ฐ Sequential์ด ๋„ˆ๋ฌด ์‰ฝ๋‹ค๋ณด๋‹ˆ Functional API๊ฐ€ ์–ด๋ ต๋‹ค๋Š” ์ธ์‹์ด ์ƒ๊ธด๋‹ค.

  • ์šฐ๋ฆฌ ๊ฐ•์˜์—์„œ๋Š” Sequential์„ ๊ฑฐ์˜ ์“ฐ์ง€ ์•Š์„ ๊ฒƒ

Sequential vs Functional API

  • ์ผ๋ฐ˜์ ์œผ๋กœ Seq๋ฅผ ์ด์šฉํ•˜๋ฉด ๋ชจ๋ธ์„ ์‰ฝ๊ฒŒ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Œ

  • ํ•˜์ง€๋งŒ Keras ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํ•ต์‹ฌ์€ Func์ž„.

  • ์ฒ˜์Œ๋ถ€ํ„ฐ Func๋กœ ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ™œ์šฉ ๊ธฐ๋ฒ•์„ ์•ˆ ๋’ค์— Seq๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•จ

Sequential

# Sequential Model์„ ์ด์šฉํ•˜์—ฌ Keras ๋ชจ๋ธ ์ƒ์„ฑ 
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import Sequential

INPUT_SIZE = 28

model = Sequential([
    Flatten(input_shape=(INPUT_SIZE, INPUT_SIZE)),
    Dense(100, activation='relu'),
    Dense(30, activation='relu'),
    Dense(10, activation='softmax')
])

model.summary()

model1 = Sequential()
model1.add(Flatten(input_shape=(INPUT_SIZE, INPUT_SIZE)))
model1.add(Dense(100, activation='relu'))
model1.add(Dense(30, activation='relu'))
model1.add(Dense(10, activation='softmax'))

model1.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
flatten (Flatten)            (None, 784)               0         
_________________________________________________________________
dense (Dense)                (None, 100)               78500     
_________________________________________________________________
dense_1 (Dense)              (None, 30)                3030      
_________________________________________________________________
dense_2 (Dense)              (None, 10)                310       
=================================================================
Total params: 81,840
Trainable params: 81,840
Non-trainable params: 0
_________________________________________________________________
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
flatten_1 (Flatten)          (None, 784)               0         
_________________________________________________________________
dense_3 (Dense)              (None, 100)               78500     
_________________________________________________________________
dense_4 (Dense)              (None, 30)                3030      
_________________________________________________________________
dense_5 (Dense)              (None, 10)                310       
=================================================================
Total params: 81,840
Trainable params: 81,840
Non-trainable params: 0
_________________________________________________________________
  • ์ฒ˜์Œ์—๋Š” ์•„๋ž˜์™€ ๊ฐ™์ด model.add ๋ฅผ ์‚ฌ์šฉํ–ˆ์ง€๋งŒ ์š”์ฆ˜์€ Sequential ์•ˆ์— ๋ฆฌ์ŠคํŠธ ํ˜•ํƒœ๋กœ ๋‹ด๋Š”๋‹ค

  • ์ด ๋•Œ Sequential์€ ์ง€๊ธˆ ์ž…๋ ฅ์ด input layer์—์„œ ์˜ค๋Š” ์ž…๋ ฅ์ธ์ง€ other layer์—์„œ ์˜ค๋Š” ์ž…๋ ฅ์ธ์ง€ ์•Œ์ง€ ๋ชปํ•œ๋‹ค.

    • ๋”ฐ๋ผ์„œ ์ด ๋•Œ Flatten ๋‚ด๋ถ€์— input_shape ๋กœ ์ธ์ž๋ฅผ ๋ฐ›์œผ๋ฉด์„œ input layer์—์„œ ์˜ค๋Š” ์ธ์ž์ธ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค

Functional API

from tensorflow.keras.layers import Input, Flatten, Dense
from tensorflow.keras.models import Model

input_tensor = Input(shape=(INPUT_SIZE, INPUT_SIZE))
x = Flatten()(input_tensor)
x = Dense(100, activation='relu')(x)
x = Dense(30, activation='relu')(x)
output = Dense(10, activation='softmax')(x)

model = Model(inputs=input_tensor, outputs=output)

model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 28, 28)]          0         
_________________________________________________________________
flatten_2 (Flatten)          (None, 784)               0         
_________________________________________________________________
dense_6 (Dense)              (None, 100)               78500     
_________________________________________________________________
dense_7 (Dense)              (None, 30)                3030      
_________________________________________________________________
dense_8 (Dense)              (None, 10)                310       
=================================================================
Total params: 81,840
Trainable params: 81,840
Non-trainable params: 0
  • ๋ฐ˜๋ฉด์— Functional API๋Š” ์ฝ”๋“œ ํ•œ ์ค„์„ ๋” ์“ฐ๋Š” ๋Œ€์‹  Input layer์˜ ์กด์žฌ๋ฅผ ๋ช…์‹œํ•œ๋‹ค.

Functional API ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ - 01

Functional API์˜ ํ•„์š”์„ฑ

  • ์•ž ์ฒ˜๋ฆฌ ๋กœ์ง์˜ ๊ฒฐ๊ณผ๊ณผ ์ด์–ด์ง€๋Š” ์ฒ˜๋ฆฌ ๋กœ์ง์˜ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์ฃผ์–ด์ง€๋Š” Chain ํ˜•ํƒœ์˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ตฌํ˜„ ๋กœ์ง์— ์ ํ•ฉ

conv_out_01=Conv2D(filter=32, kernel_size = 3)(input_tensor)

filter=32, kernel_size = 3

  • Functional API๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ

input tensor

  • Functional API์— ์ž…๋ ฅ๋˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ’

=> ํ•˜์ดํผ ํŒŒ๋ฆฌ๋ฏธํ„ฐ์™€ ์ธ์ž๋ฅผ ๋”ฐ๋กœ ๊ตฌ๋ถ„ํ•ด์„œ ๋ฐ›๋Š” ๊ตฌ์กฐ์ธ ๋“ฏ ์‹ถ๋‹ค

Sequential์€ Functional API๋ฅผ ์ข€ ๋” ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ

Functional API ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ - 02

Customํ•œ Dense Layer ์ƒ์„ฑ

from tensorflow.keras.layers import Layer, Input
from tensorflow.keras.models import Model
import tensorflow as tf

class CustomDense(tf.keras.layers.Layer):
    # CustomDense ๊ฐ์ฒด ์ƒ์„ฑ์‹œ ์ž…๋ ฅ๋˜๋Š” ์ดˆ๊ธฐํ™” parameter ์ฒ˜๋ฆฌ
    def __init__(self, units=32):
        super(CustomDense, self).__init__()
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )
        
    # CustomDense ๊ฐ์ฒด์— callable๋กœ ์ž…๋ ฅ๋œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ. 
    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

# input ๊ฐ’์„ 4๊ฐœ์˜ ์›์†Œ๋ฅผ ๊ฐ€์ง€๋Š” 1์ฐจ์›์œผ๋กœ ์ƒ์„ฑ. 
inputs = Input((4,))
# 10๊ฐœ์˜ unit์„ ๊ฐ€์ง€๋Š” CustomDense ๊ฐ์ฒด๋ฅผ ์ƒ์„ฑ ํ›„ callable๋กœ inputs๊ฐ’ ์ž…๋ ฅ 
outputs = CustomDense(10)(inputs)

# inputs์™€ outputs๋กœ model ์ƒ์„ฑ. 
model = Model(inputs, outputs)
model.summary()

outputs = CustomDense(10)(inputs)

  • 10 ์€ init ํ•จ์ˆ˜๋กœ ์ „๋‹ฌ๋˜์–ด self.units == 10 ์ด ๋œ๋‹ค.

  • inputs ๋Š” call ํ•จ์ˆ˜๋กœ ์ „๋‹ฌ๋œ๋‹ค

    • ์ด๊ฒƒ์€ CustomDense๊ฐ€ tf.keras.layers.layer ๋ฅผ ์ƒ์†๋ฐ›์•„์„œ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ

    • __call__ ๋˜๋˜ ๋ฉ”์„œ๋“œ์™€ ๋™์ผํ•œ ๊ธฐ๋Šฅ์„ ํ•œ๋‹ค

  • callable ์ธ์ž ์ž…๋ ฅ ๋ถ€๋ถ„์„ ๋ณ„๋„๋กœ ์ˆ˜ํ–‰ํ•ด๋„ ๋ฌด๋ฐฉํ•˜๋‹ค

inputs = Input((4,))
# 10๊ฐœ์˜ unit์„ ๊ฐ€์ง€๋Š” CustomDense ๊ฐ์ฒด๋ฅผ ์ƒ์„ฑ ํ›„ callable๋กœ inputs๊ฐ’ ์ž…๋ ฅ 
my_layer = CustomDense(10)
outputs = my_layer(inputs)

# inputs์™€ outputs๋กœ model ์ƒ์„ฑ. 
model = Model(inputs, outputs)
model.summary()

Sequential Model์˜ ์›๋ฆฌ

from tensorflow.keras.models import Sequential

model = Sequential([Input((4,)),
                   CustomDense(10),
                   CustomDense(8), 
                   tf.keras.layers.ReLU()])
model.summary()

์œ„์™€ ๊ฐ™์€ Seq๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž. ์ด๋Š” ์•„๋ž˜ ์ฝ”๋“œ์ฒ˜๋Ÿผ ๊ตฌํ˜„์ด ๋˜์–ด์žˆ๋‹ค

layers_list = [Input((4,)), CustomDense(10), CustomDense(8), tf.keras.layers.ReLU()]

inputs = None
callable_inputs = None
outputs = None
# layers_list์— ์žˆ๋Š” Functional ๊ฐ์ฒด๋ฅผ iteration ์ˆ˜ํ–‰ํ•˜๋ฉด์„œ ์ ์šฉ. 
for index, layer in enumerate(layers_list):
    # layers_list์˜ ์ฒซ๋ฒˆ์งธ ์ธ์ž๋Š” Input ๊ฐ„์ฃผ. 
    if index == 0:
        inputs = layer
        callable_inputs = layer
    # Functional ๊ฐ์ฒด์— callable ์ธ์ž๋กœ callable_inputs๋ฅผ ์ž…๋ ฅํ•˜๊ณ  ๋ฐ˜ํ™˜ ๊ฒฐ๊ณผ ๊ฐ’์„ ๋‹ค์‹œ callable_inputs๋กœ ํ• ๋‹น.     
    else: 
        callable_inputs = layer(callable_inputs)
    
outputs = callable_inputs
model = Model(inputs, outputs)
model.summary()
  • ์ฒซ ๋ ˆ์ด์–ด(index == 0)๋Š” callable_input ์„ ์ž๊ธฐ ์ž์‹ ์œผ๋กœ ์„ค์ •ํ•˜๋ฉฐ ๊ทธ ๋‹ค์Œ ๋ ˆ์ด์–ด๋ถ€ํ„ฐ layer(callable_inputs) ๋กœ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜์žˆ๋‹ค.

  • ์ด ์ฝ”๋“œ๋Š” ๊ฐ„๋‹จํ•œ ๊ตฌ์กฐ์ด๊ณ  ์‹ค์ œ๋กœ๋Š” ์กฐ๊ธˆ ๋” ๋ณต์žกํ•œ ์ฒ˜๋ฆฌ๋“ค์ด ์žˆ๋‹ค.

  • ์—ฌ๊ธฐ์„œ ์ค‘์š”ํ•œ ์ ์€ Seq ์—ญ์‹œ Func API๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ Live Coding ์œผ๋กœ ๊ตฌํ˜„ ์ •๋ฆฌ - 01

์‹ค์Šต

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ Live Coding ์œผ๋กœ ๊ตฌํ˜„ ์ •๋ฆฌ - 02

์‹ค์Šต

Keras Callback ๊ฐœ์š”

๋Œ€ํ‘œ์ ์œผ๋กœ ํ•™์Šต๋ฅ ์„ ๋™์ ์œผ๋กœ ์กฐ์ •ํ•˜๊ณ  ์‹ถ์„ ๋•Œ ์‚ฌ์šฉํ•œ๋‹ค.

  • ๊ทธ ์ด์™ธ์—๋„ Epoch๊ฐ€ ๋Œ์•„๊ฐˆ ๋•Œ ๋™์ ์œผ๋กœ ๋ฌด์–ธ๊ฐ€๋ฅผ ๊ฑด๋“œ๋ฆฌ๊ณ  ์‹ถ์„ ๋•Œ ์‚ฌ์šฉํ•œ๋‹ค

๋“ฑ๋ก๋  ์ˆ˜ ์žˆ๋Š” Callback ๋“ค์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค

  • ModelCheckpoint()

  • ReduceLROnPlateau()

  • LearningRateScheduler()

  • EarlyStopping()

  • TensorBoard()

Keras Callback ์‹ค์Šต - ModelCheckpoint, ReduceLROnPlateau, EarlyStopping

ModelCheckpoint

  • ์ฃผ๊ธฐ์ ์œผ๋กœ ๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๋Š” ๊ฒƒ

    • ๋ชจ๋ธ์ด ๋Œ์•„๊ฐ€๋Š”๋ฐ 6์‹œ๊ฐ„์ด ๊ฑธ๋ฆฐ๋‹ค๊ณ  ํ•˜๋ฉด ๋งค๋ฒˆ ๋ชจ๋ธ์„ ๋Œ๋ฆด ์ˆ˜ ์—†์œผ๋‹ˆ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ฒŒ ๋œ๋‹ค

    • ์ด ๋•Œ ํ•™์Šต์ด ๋๋‚˜๊ณ  ๋ชจ๋ธ์„ ์ €์žฅํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ ์ฃผ๊ธฐ์ ์œผ๋กœ ํ•˜๊ฒŒ ๋œ๋‹ค

    • ์™œ๋ƒํ•˜๋ฉด, ๋ชจ๋ธ์ด ๋Œ๋‹ค๊ฐ€ ๋ฆฌ์†Œ์Šค ๋ถ€์กฑ์œผ๋กœ ์ข…๋ฃŒ๋  ์ˆ˜๋„ ์žˆ๊ณ  ํ•™์Šต์ด ๋๋‚œ ์‹œ์ ์ด ๋ชจ๋ธ์ด ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ๋‚ด๋Š” ์ง€์ ์„ ์ง€๋‚ฌ์„ ์ˆ˜๋„ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค

ModelCheckpoint(filepath,
                monitor='val_loss',
                verbose=0, 
                save_best_only=False,
                save_weights_only=False,
                mode='auto',
                period=1)
  • ํŠน์ • ์กฐ๊ฑด์— ๋งž์ถฐ์„œ ๋ชจ๋ธ์„ ํŒŒ์ผ๋กœ ์ €์žฅ

  • filepath: filepath๋Š” (on_epoch_end์—์„œ ์ „๋‹ฌ๋˜๋Š”) epoch์˜ ๊ฐ’๊ณผ logs์˜ ํ‚ค๋กœ ์ฑ„์›Œ์ง„ ์ด๋ฆ„ ํ˜•์‹ ์˜ต์…˜์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Œ. ์˜ˆ๋ฅผ ๋“ค์–ด filepath๊ฐ€ weights.{epoch:02d}-{val_loss:.2f}.hdf5๋ผ๋ฉด, ํŒŒ์ผ ์ด๋ฆ„์— ์„ธ๋Œ€ ๋ฒˆํ˜ธ์™€ ๊ฒ€์ฆ ์†์‹ค์„ ๋„ฃ์–ด ๋ชจ๋ธ์˜ ์ฒดํฌํฌ์ธํŠธ๊ฐ€ ์ €์žฅ

  • monitor: ๋ชจ๋‹ˆํ„ฐํ•  ์ง€ํ‘œ(loss ๋˜๋Š” ํ‰๊ฐ€ ์ง€ํ‘œ)

  • save_best_only: ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ชจ๋ธ๋งŒ ์ €์žฅํ•  ์—ฌ๋ถ€

    • 100๊ฐœ๋ฅผ ๋‹ค ์ €์žฅํ•ด๋‘๋ฉด ์šฉ๋Ÿ‰์ด ๋„ˆ๋ฌด ํฌ๋‹ˆ๊นŒ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์˜ ๋ชจ๋ธ๋งŒ ์ €์žฅํ• ์ง€์— ๋Œ€ํ•œ ์—ฌ๋ถ€

  • save_weights_only: Weights๋งŒ ์ €์žฅํ•  ์ง€ ์—ฌ๋ถ€

    • ๋ณดํ†ต์€ ๋ชจ๋ธ๋ณด๋‹ค weights๋งŒ์„ ์ €์žฅํ•˜๋Š” ๊ฒƒ์ด ์ข‹๋‹ค

    • True๋กœ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Œ

  • mode: {auto, min, max} ์ค‘ ํ•˜๋‚˜. monitor ์ง€ํ‘œ๊ฐ€ ๊ฐ์†Œํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ min, ์ฆ๊ฐ€ํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ max, auto๋Š” monitor ์ด๋ฆ„์—์„œ ์ž๋™์œผ๋กœ ์œ ์ถ”.

    • val-loss๋‚˜ val-accuracy์˜ ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” loss๊ฐ™์€ ๊ฒฝ์šฐ๋Š” ์ž‘์„ ์ˆ˜๋ก ์ข‹๊ณ  accuracy๋Š” ํด์ˆ˜๋ก ์ข‹๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์ง€ํ‘œ์— ๋งž์ถ”์–ด max, min, auto๋กœ ์„ค์ •

  • period : ๋ช‡ epoch๋งˆ๋‹ค ์ €์žฅํ• ์ง€

ReduceLROnPlateau

  • Plateau๋Š” ์•ˆ์ • ๊ธฐ์— ๋‹ฌํ•˜๋‹ค ๋ผ๋Š” ๋œป

    • OnPlateau : ์•ˆ์ •์ ์ด๊ฒŒ ๋ ๋•Œ๊นŒ์ง€

    • LR : ์—๋Ÿฌ๋ฅผ

    • Reduce : ๊ฐ์†Œ์‹œ์ผœ๋ผ

    • ๋ผ๋Š” ๋œป

ReduceLROnPlateau(monitor='val_loss',
                factor=0.1,
                patience=10,
                verbose=0,
                mode='auto',
                min_delta=0.0001,
                cooldown=0,
                min_lr=0)
  • ํŠน์ • epochs ํšŸ์ˆ˜๋™์•ˆ ์„ฑ๋Šฅ์ด ๊ฐœ์„  ๋˜์ง€ ์•Š์„ ์‹œ Learning rate๋ฅผ ๋™์ ์œผ๋กœ ๊ฐ์†Œ ์‹œํ‚ด

  • monitor: ๋ชจ๋‹ˆํ„ฐํ•  ์ง€ํ‘œ(loss ๋˜๋Š” ํ‰๊ฐ€ ์ง€ํ‘œ)

  • factor: ํ•™์Šต ์†๋„๋ฅผ ์ค„์ผ ์ธ์ˆ˜. new_lr = lr * factor

  • patience: Learing Rate๋ฅผ ์ค„์ด๊ธฐ ์ „์— monitorํ•  epochs ํšŸ์ˆ˜.

  • mode: {auto, min, max} ์ค‘ ํ•˜๋‚˜. monitor ์ง€ํ‘œ๊ฐ€ ๊ฐ์†Œํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ min, ์ฆ๊ฐ€ํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ max, auto๋Š” monitor ์ด๋ฆ„์—์„œ ์œ ์ถ”.

EarlyStopping

  • ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ์˜ค๋ฅ˜๋Š” ์ค„์ง€๋งŒ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ์˜ค๋ฅ˜๋Š” ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์–ด๋А ์ •๋„์˜ ํ•™์Šต์ด ์ง„ํ–‰๋˜๋ฉด ๋ฉˆ์ถ”๋Š” ํ•จ์ˆ˜

EarlyStopping(monitor='val_loss',
                min_delta=0,
                patience=0,
                verbose=0,
                mode='auto',
                baseline=None,
                restore_best_weights=False)
  • ํŠน์ • epochs ๋™์•ˆ ์„ฑ๋Šฅ์ด ๊ฐœ์„ ๋˜์ง€ ์•Š์„ ์‹œ ํ•™์Šต์„ ์กฐ๊ธฐ์— ์ค‘๋‹จ

  • monitor: ๋ชจ๋‹ˆํ„ฐํ•  ์ง€ํ‘œ(loss ๋˜๋Š” ํ‰๊ฐ€ ์ง€ํ‘œ)

  • patience: Early Stopping ์ ์šฉ ์ „์— monitorํ•  epochs ํšŸ์ˆ˜.

  • mode: {auto, min, max} ์ค‘ ํ•˜๋‚˜. monitor ์ง€ํ‘œ๊ฐ€ ๊ฐ์†Œํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ min, ์ฆ๊ฐ€ํ•ด์•ผ ์ข‹์„ ๊ฒฝ์šฐ max, auto๋Š” monitor ์ด๋ฆ„์—์„œ ์œ ์ถ”.

๋ณดํ†ต์€ ํ•˜๋‚˜์”ฉ ์“ฐ์ง€ ์•Š๊ณ  ๋ชจ๋‘ ํ•œ๊บผ๋ฒˆ์— ๋‹ค ์“ด๋‹ค.

from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
โ€‹
model = create_model()
model.compile(optimizer=Adam(0.001), loss='categorical_crossentropy', metrics=['accuracy'])
โ€‹
mcp_cb = ModelCheckpoint(filepath='/kaggle/working/weights.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', 
                         save_best_only=True, save_weights_only=True, mode='min', period=1, verbose=0)
rlr_cb = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=5, mode='min', verbose=1)
ely_cb = EarlyStopping(monitor='val_loss', patience=7, mode='min', verbose=1)
โ€‹
history = model.fit(x=tr_images, y=tr_oh_labels, batch_size=128, epochs=40, validation_data=(val_images, val_oh_labels),
                   callbacks=[mcp_cb, rlr_cb, ely_cb])
  • model.fit(callbacks=[]) ๋กœ callback ํ•จ์ˆ˜๋“ค์„ ์ ์šฉ์‹œ์ผœ์ค€ ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค

Numpy array์™€ Tensor ์ฐจ์ด, ๊ทธ๋ฆฌ๊ณ  fit() ๋ฉ”์†Œ๋“œ ์ƒ์„ธ ์„ค๋ช…

Numpy ํŠน์ง•

  • SIMD, Single Instruction Multiple Data ๊ธฐ๋ฐ˜์œผ๋กœ ์ˆ˜ํ–‰์†๋„๋ฅผ ์ตœ์ ํ™” ํ•  ์ˆ˜ ์žˆ๊ณ  ๋งค์šฐ ๋น ๋ฅด๊ฒŒ ๋Œ€๋Ÿ‰ ๋ฐ์ดํ„ฐ์˜ ์ˆ˜์น˜ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค

    • simd๋Š” ๋ช…๋ น ํ•œ๋ฒˆ์— ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ฒ˜๋ฆฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๋œป

  • ๋„˜ํŒŒ์ด๊ฐ€ ์—†์—ˆ๋‹ค๋ฉด ํŒŒ์ด์ฌ์˜ ๋จธ์‹ ๋Ÿฌ๋‹ ์šด์šฉ์€ ๋ถˆ๊ฐ€๋Šฅ

SIMD

  • ๋ณ‘๋ ฌ ํ”„๋กœ์„ธ์„œ์˜ ํ•œ ์ข…๋ฅ˜๋กœ, ํ•˜๋‚˜์˜ ๋ช…๋ น์–ด๋กœ ์—ฌ๋Ÿฌ๊ฐœ์˜ ๊ฐ’์„ ๋™์‹œ์— ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ์‹

  • ๋น„๋””์˜ค ๊ฒŒ์ž„, ์ปดํ“จํ„ฐ ๊ทธ๋ž˜ํ”ฝ์Šค, HPC, High Performance Computing ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ

Numpy Array vs Tensor

Numpy

  • Numpy๋Š” GPU๋ฅผ ์ง€์›ํ•˜์ง€ ์•Š์Œ

  • ๋ณด๋‹ค ๋ฒ”์šฉ์ ์ธ ์˜์—ญ(์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ, ์ž์—ฐ๊ณผํ•™/๊ณตํ•™)์—์„œ ์ฒ˜๋ฆฌ

Tensor

  • Tensor๋Š” CPU์™€ GPU๋ฅผ ๋ชจ๋‘ ์ง€์›ํ•œ๋‹ค

    • ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต์€ CPU SIMD ๊ธฐ๋ฐ˜์˜ Numpy๋กœ๋Š” ๊ฐ๋‹นํ•  ์ˆ˜ ์—†์„ ์ •๋„์˜ ๋งŽ์€ ์—ฐ์‚ฐ์ด ํ•„์š”

    • ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต์„ ์œ„ํ•ด GPU๊ฐ€ ํ•„์š”

  • ๋”ฅ๋Ÿฌ๋‹ ์ „์šฉ์˜ ๊ธฐ๋Šฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ

  • Tensorflow/Keras, Pytorch ๋“ฑ์˜ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ ๋ณ„๋กœ ๊ธฐ๋Šฅ์ ์ธ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์ถ”๊ฐ€ ๊ธฐ๋Šฅ๋“ค์ด ์žˆ์Œ

  • ์ตœ๊ทผ ์ถ”์„ธ๋Š” Numpy์˜ ๋ฒ”์šฉ์ ์ธ ์˜์—ญ๊นŒ์ง€ ์ฒ˜๋ฆฌ ์˜์—ญ์„ ํ™•์ถฉํ•˜๊ณ  ์žˆ์Œ

๋ชจ๋ธ

  • ๋ชจ๋ธ์— ์ž…๋ ฅ๋˜๋Š” ์ธ์ž๋Š” np.array ์ด๋‹ค.

  • ์ด ๋•Œ ๋ชจ๋ธ์˜ Input layer์—์„œ np -> tensor๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค.

  • ๋”ฐ๋ผ์„œ Flatten layer์—์„œ์˜ ์ž…๋ ฅ์€ ์ด๋ฏธ tensor์ด๋‹ค.

Previous8 SatNext6 Thu

Last updated 4 years ago

Was this helpful?