Statistics110

1๊ฐ•- ํ™•๋ฅ ๊ณผ ์…ˆ ์›๋ฆฌ (Probability and Counting)arrow-up-right

2๊ฐ•- ํ•ด์„์„ ํ†ตํ•œ ๋ฌธ์ œํ’€์ด ๋ฐ ํ™•๋ฅ ์˜ ๊ณต๋ฆฌ (Story Proofs, Axioms of Probability)arrow-up-right

3๊ฐ•- Birthday Problem๊ณผ ํ™•๋ฅ ์˜ ํŠน์„ฑ (Birthday Problem, Properties of Probability)arrow-up-right

4๊ฐ•- ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  (Conditional Probability)arrow-up-right

5๊ฐ•- ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ๊ณผ ์ „ํ™•๋ฅ ์ •๋ฆฌ (Conditioning Continued, Law of Total Probability)arrow-up-right

6๊ฐ•- Monty Hall ๋ฌธ์ œ์™€ ์‹ฌ์Šจ์˜ ์—ญ์„ค (Monty Hall, Simpson's Paradox)arrow-up-right

7๊ฐ•- ๋„๋ฐ•๊พผ์˜ ํŒŒ์‚ฐ ๋ฌธ์ œ์™€ ํ™•๋ฅ ๋ณ€์ˆ˜ (Gambler's Ruin and Random Variables)arrow-up-right

8๊ฐ•- ํ™•๋ฅ ๋ณ€์ˆ˜์™€ ํ™•๋ฅ ๋ถ„ํฌ (Random Variables and Their Distributions)arrow-up-right

9๊ฐ•- ๊ธฐ๋Œ“๊ฐ’, ์ง€์‹œํ™•๋ฅ ๋ณ€์ˆ˜์™€ ์„ ํ˜•์„ฑ (Expectation, Indicator Random Variables, Linearity)arrow-up-right

10๊ฐ•- ๊ธฐ๋Œ“๊ฐ’ (Expectation Continued)arrow-up-right

11๊ฐ•- ํฌ์•„์†ก๋ถ„ํฌ (The Poisson distribution)arrow-up-right

12๊ฐ•- ์ด์‚ฐ, ์—ฐ์†, ๊ท ๋“ฑ๋ถ„ํฌ (Discrete vs. Continuous, the Uniform)arrow-up-right

13๊ฐ•- ์ •๊ทœ๋ถ„ํฌ (Normal Distribution)arrow-up-right

14๊ฐ•- ์œ„์น˜, ์ฒ™๋„ ๋ฐ ๋ฌด์˜์‹์ ์ธ ํ†ต๊ณ„ํ•™์ž์˜ ๋ฒ•์น™(Location, Scale, and LOTUS)arrow-up-right

15๊ฐ•- Midterm Reviewarrow-up-right

16๊ฐ•- ์ง€์ˆ˜๋ถ„ํฌ(Exponential Distribution)arrow-up-right

17๊ฐ•- ์ ๋ฅ ์ƒ์„ฑํ•จ์ˆ˜(Moment Generating Functions)arrow-up-right

18๊ฐ•- ์ ๋ฅ ์ƒ์„ฑํ•จ์ˆ˜_2 (MGFs Continued)arrow-up-right

19๊ฐ•- ๊ฒฐํ•ฉ, ์กฐ๊ฑด๋ถ€, ์ฃผ๋ณ€ ํ™•๋ฅ ์งˆ๋Ÿ‰ํ•จ์ˆ˜(Joint, Conditional, and Marginal Distributions)arrow-up-right

20๊ฐ•- ๋‹คํ•ญ๋ถ„ํฌ ๋ฐ ์ฝ”์‹œ๋ถ„ํฌ(Multinomial and Cauchy)arrow-up-right

21๊ฐ•- ๊ณต๋ถ„์‚ฐ๊ณผ ์ƒ๊ด€๊ณ„์ˆ˜(Covariance and Correlation)arrow-up-right

22๊ฐ•- ๋ณ€์ˆ˜๋ณ€ํ™˜๊ณผ ํ•ฉ์„ฑ๊ณฑ(Transformations and Convolutions)arrow-up-right

23๊ฐ•- ๋ฒ ํƒ€๋ถ„ํฌ(Beta disctribution)arrow-up-right

24๊ฐ•- ๊ฐ๋งˆ๋ถ„ํฌ์™€ ํฌ์•„์†ก ๊ณผ์ •(Gamma distribution and Poisson process)arrow-up-right

25๊ฐ•- ์ˆœ์„œํ†ต๊ณ„๋Ÿ‰๊ณผ ์กฐ๊ฑด๋ถ€ ๊ธฐ๋Œ“๊ฐ’(Order Statistics and Conditional Expectations)arrow-up-right

26๊ฐ•- ์กฐ๊ฑด๋ถ€ ๊ธฐ๋Œ“๊ฐ’_2(Conditional Expectation Continuted)arrow-up-right

27๊ฐ•- ์กฐ๊ฑด๋ถ€ ๊ธฐ๋Œ“๊ฐ’_3(Conditional Expectation given an R.V.)arrow-up-right

28๊ฐ•- ๋ถ€๋“ฑ์‹(Inequalities)arrow-up-right

29๊ฐ•- ํฐ ์ˆ˜์˜ ๋ฒ•์น™๊ณผ ์ค‘์‹ฌ๊ทนํ•œ์ •๋ฆฌ(Law of Large Numbers and Central Limit Theorem)arrow-up-right

30๊ฐ•- ์นด์ด์ œ๊ณฑ๋ถ„ํฌ, t๋ถ„ํฌ, ๋‹ค๋ณ€๋Ÿ‰์ •๊ทœ๋ถ„ํฌ(Chi-Square, Student-t, Multivariate Normal)

31๊ฐ•- ๋งˆ์ฝ”ํ”„ ์ฒด์ธ(Markov Chains)

32๊ฐ•- ๋งˆ์ฝ”ํ”„ ์ฒด์ธ_2(Markov Chains Continued)

33๊ฐ•- ๋งˆ์ฝ”ํ”„ ์ฒด์ธ_3(Markov Chains Continued Further

34๊ฐ•- A Look Ahead

Last updated