๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [AI ์Šค์ฟจ 1๊ธฐ] 6์ฃผ์ฐจ DAY 3
  • ์„ ํ˜• ๋ถ„๋ฅ˜(Linear Classification)
  • ํŒ๋ณ„ํ•จ์ˆ˜ (Discriminant model)
  • ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ์ตœ์†Œ์ œ๊ณฑ๋ฒ• (Least squares for classification)
  • ํผ์…‰ํŠธ๋ก  ์•Œ๊ณ ๋ฆฌ์ฆ˜ (The perceptron algorithm)
  • ํ™•๋ฅ ์  ์ƒ์„ฑ ๋ชจ๋ธ (Probabilistic Generative Models)
  • ๋ฐ์ดํ„ฐ๊ฐ€ ์ด์‚ฐ์ผ ๋•Œ (Discrete features)
  • [Statistics 110]
  • 3๊ฐ•- Birthday Problem๊ณผ ํ™•๋ฅ ์˜ ํŠน์„ฑ (Birthday Problem, Properties of Probability)

Was this helpful?

  1. 2021 TIL
  2. JAN

13 Wed

TIL

Previous14 ThuNext12 Tue

Last updated 4 years ago

Was this helpful?

[AI ์Šค์ฟจ 1๊ธฐ] 6์ฃผ์ฐจ DAY 3

์ถœ์ฒ˜ :

์„ ํ˜• ๋ถ„๋ฅ˜(Linear Classification)

  • ๋ถ„๋ฅ˜ ๋ชฉํ‘œ : ์ž…๋ ฅ๋ฒกํ„ฐ x๋ฅผ K๊ฐœ์˜ ๊ฐ€๋Šฅํ•œ ํด๋ž˜์Šค ์ค‘ ํ•˜๋‚˜์˜ ํด๋ž˜์Šค๋กœ ํ• ๋‹น

  • ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๊ฒฐ์ •์ด๋ก 

    • ํ™•๋ฅ ์  ๋ชจ๋ธ(probabilistic model)

      • ์ƒ์„ฑ๋ชจ๋ธ(generative model)

        ํด๋ž˜์Šค์˜ ์‚ฌํ›„ํ™•๋ฅ  (using ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ) ๋˜๋Š” ์ง์ ‘ ๋ชจ๋ธ๋ง

      • ์‹๋ณ„๋ชจ๋ธ(discriminative model)

        ์ง์ ‘ ๋ชจ๋ธ๋ง

    • ํŒ๋ณ„ํ•จ์ˆ˜(discriminant model)

      ํ™•๋ฅ  ๊ณ„์‚ฐ ์—†์ด ์ž…๋ ฅ x๋ฅผ ํด๋ž˜์Šค๋กœ ํ• ๋‹นํ•˜๋Š” ํŒ๋ณ„ํ•จ์ˆ˜ ๊ตฌํ•˜๊ธฐ(์ฐพ๊ธฐ)

ํŒ๋ณ„ํ•จ์ˆ˜ (Discriminant model)

  • ์„ ํ˜•ํ•จ์ˆ˜์— ๊ด€ํ•œ ํŒ๋ณ„ํ•จ์ˆ˜์— ๋Œ€ํ•ด ์ƒ๊ฐํ•˜์ž.

  • ๋‘๊ฐœ์˜ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ์„ ํ˜•ํŒ๋ณ„ํ•จ์ˆ˜

  • ๊ฒฐ์ • ๊ฒฝ๊ณ„(decision boundary)

    • y(x)=0์„ ๋งŒ์กฑํ•˜๋Š” x์˜ ์ง‘ํ•ฉ (x๊ฐ€ D์ฐจ์›์˜ ์ž…๋ ฅ๋ฒกํ„ฐ์ผ ๋•Œ, D-1์ฐจ์›์˜ hyperplane)

    • ์›์ ์—์„œ ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ

      • ๋ฒกํ„ฐ xโŠฅ : ์›์ ์—์„œ ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์‚ฌ์˜(projection)์ผ ๋•Œ (์•„๋ž˜ ๊ทธ๋ฆผ ์ฐธ๊ณ )

      • xโŠฅ : ์ž„์˜์˜ ํ•œ์  x์˜ ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด์— ๋Œ€ํ•œ ์‚ฌ์˜์ผ ๋•Œ

        y(x)๋Š” x์™€ ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด ์‚ฌ์ด์˜ ๋ถ€ํ˜ธํ™”๋œ ๊ฑฐ๋ฆฌ์— ๋น„๋ก€

        ์ •๋ฆฌํ•˜๋ฉด,

  • ๋‹ค์ˆ˜์˜ ํด๋ž˜์Šค์— ๋Œ€ํ•œ ํŒ๋ณ„ํ•จ์ˆ˜

๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ์ตœ์†Œ์ œ๊ณฑ๋ฒ• (Least squares for classification)

  • ์‚ฌ์‹ค ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•ด ์ตœ์†Œ์ œ๊ณฑ๋ฒ• ์“ฐ๋Š”๊ฑด ๋ณ„๋กœ ์ข‹์ง€ xโ—

  • ํด๋ž˜์Šค๋ฅผ ํŒ๋ณ„ํ•˜๋Š” ํŒ๋ณ„์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ

  • ์ œ๊ณฑํ•ฉ ์—๋Ÿฌ ํ•จ์ˆ˜(sum-of-squared error function)

    ์œ ๋„ ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

  • ๋”ฐ๋ผ์„œ ํŒ๋ณ„ํ•จ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

  • ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ์ตœ์†Œ์ œ๊ณฑ๋ฒ•์˜ ๋ฌธ์ œ์ โœจ

    • outlier์— ๋ฏผ๊ฐ

    • ๋ชฉํ‘œ๊ฐ’์˜ ํ™•๋ฅ ๋ถ„ํฌ์— ๋Œ€ํ•œ ์ž˜๋ชป๋œ ๊ฐ€์ •์— ๊ธฐ์ดˆโ—

ํผ์…‰ํŠธ๋ก  ์•Œ๊ณ ๋ฆฌ์ฆ˜ (The perceptron algorithm)

  • ๊ธฐ์ €ํ•จ์ˆ˜๋ฅผ ๋„ฃ์–ด ์ผ๋ฐ˜ํ™”๋œ ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

  • ์—๋Ÿฌ ํ•จ์ˆ˜

  • Stochastic gradient descent์˜ ์ ์šฉํ•˜๋ฉด,

  • ์œ„ ์—…๋ฐ์ดํŠธ๊ฐ€ ์‹คํ–‰๋  ๋•Œ ์ž˜๋ชป ๋ถ„๋ฅ˜๋œ ์ƒ˜ํ”Œ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

โญ ์ตœ์†Œ์ œ๊ณฑ๋ฒ•๊ณผ ํผ์…‰ํŠธ๋ก  ๋ชจ๋‘ output ์ถœ๋ ฅํ•˜์ง€๋งŒ, ํ™•๋ฅ ์„ ๊ณ„์‚ฐํ•˜์ง„ ์•Š์Œโ—

ํ™•๋ฅ ์  ์ƒ์„ฑ ๋ชจ๋ธ (Probabilistic Generative Models)

  • ์ด์ „ ํŒ๋ณ„ํ•จ์ˆ˜์—์„œ๋Š” ์—๋Ÿฌํ•จ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์ตœ์ ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ด์ง€๋งŒ, ํ™•๋ฅ ์  ๋ชจ๋ธ์€ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋ฅผ ๋ชจ๋ธ๋งํ•˜๋ฉด์„œ ๋ถ„๋ฅ˜ ๋ฌธ์ œ๋ฅผ ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ’€๊ฒŒ๋จโ—

  • 2-class๋ฅผ ๊ฐ€์ •ํ•˜๊ณ , x๊ฐ€ ํด๋ž˜์Šค 1(C1)์— ์†ํ•  ํ™•๋ฅ 

    • logistic sigmoid function

      • ์„ฑ์งˆ

  • ์ผ๋ฐ˜ ์„ ํ˜• ๋ชจ๋ธ(generalized linear model) - ํด๋ž˜์Šค๊ฐ€ k>2์ธ ๊ฒฝ์šฐ (์ผ๋ฐ˜ํ™”)โ—

โญ 2-class : logistic sigmoid function๋ฅผ ์ด์šฉ, k-class : softmax function๋ฅผ ์ด์šฉโ—

  • ์—ฐ์†์  ์ž…๋ ฅ (continuous inputs)

    • ๊ฐ€์ • ํ•˜์— ์–ด๋–ค ํด๋ž˜์Šค๊ฐ€ ์ฃผ์–ด์กŒ๋‹ค๋ฉด, ํ•ด๋‹น ๋ฐ์ดํ„ฐ๋ฅผ outputํ•˜๋Š” ํ™•๋ฅ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

    • 2-class์— ๋Œ€ํ•ด์„œ,

      ์ด๋•Œ, w๋ฒกํ„ฐ์™€ w0๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

      a์— ๋Œ€ํ•œ ์ „๊ฐœ

    • k-class์— ๋Œ€ํ•ด์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ™•์žฅ ๊ฐ€๋Šฅ.

  • ์ตœ๋Œ€์šฐ๋„ํ•ด (Maximum likelihood solution)

    • 2-class์˜ ๊ฒฝ์šฐ

      • ๋ฐ์ดํ„ฐ์™€ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค

      • ์šฐ๋„ํ•จ์ˆ˜

        • ๊ฐ ํด๋ž˜์Šค์— ๋Œ€ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ• ์ˆ˜ ์žˆ์Œ

          p({\bf x}_n, C_2) = p(C_2)p({\bf x}_n|C_2) = (1-\pi) N({\bf x}_n;\mu_2, \Sigma)

          ๋”ฐ๋ผ์„œ,

        ฯ€ ๊ตฌํ•˜๊ธฐฮผ ๊ตฌํ•˜๊ธฐโˆ‘ ๊ตฌํ•˜๊ธฐ

๋ฐ์ดํ„ฐ๊ฐ€ ์ด์‚ฐ์ผ ๋•Œ (Discrete features)

    • ํด๋ž˜์Šค๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ํŠน์„ฑ๋“ค์ด ์กฐ๊ฑด๋ถ€ ๋…๋ฆฝ(conditional independence)์ด๋ผ๋Š” ๊ฐ€์ •์„ ํ•  ๊ฒฝ์šฐ ๋ฌธ์ œ๋Š” ๋‹จ์ˆœํ™”๋จ! โ†’ naive Bayes ๊ฐ€์ •

[Statistics 110]

Present Part [3 / 34]

3๊ฐ•- Birthday Problem๊ณผ ํ™•๋ฅ ์˜ ํŠน์„ฑ (Birthday Problem, Properties of Probability)

์ƒ์ผ ๋ฌธ์ œ : ์ƒ์ผ์ด ๊ฐ™์€ ๋‘ ๋ช…์˜ ์‚ฌ๋žŒ์„ ์ฐพ๊ธฐ

  • ๊ฐ€์ •

    • 2์›” 29์ผ์€ ์ œ์™ธํ•œ๋‹ค

    • 365์ผ์ด ๋ชจ๋‘ ๋™์ผํ•œ ํ™•๋ฅ ์„ ๊ฐ€์ง„๋‹ค

      • ์‹ค์ œ๋กœ๋Š” ๊ทธ๋ ‡์ง€ ์•Š๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด 9์›”์— ์ถœ์ƒ์ด ๋งŽ๋‹ค.

      • ๋…๋ฆฝ : ํ•œ ์‚ฌ๋žŒ์˜ ์ƒ์ผ์ด ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ์ƒ์ผ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๋Š”๋‹ค.

์ตœ์†Œํ•œ ๋ช‡๋ช…์˜ ์‚ฌ๋žŒ์ด ์žˆ์–ด์•ผ 50%์˜ ํ™•๋ฅ ์„ ๋งŒ์กฑํ• ๊นŒ?

  • 365๊ฐœ์˜ ์ƒ์ž์— ๊ณต์„ ์ตœ์†Œํ•œ ํ•˜๋‚˜์”ฉ ์ง‘์–ด๋„ฃ๋Š” ๊ฒฝ์šฐ์™€ ๋™์ผ

  • ์‚ฌ๋žŒ์ด 366๋ช…์ผ ๊ฒฝ์šฐ๋Š” ํ™•๋ฅ ์ด 1์ด๋‹ค.

    • ์ด๋ฅผ ๋น„๋‘˜๊ธฐ์ง‘ ์›๋ฆฌ๋ผ๊ณ  ํ•œ๋‹ค

  • ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ๋“ค์€ ์ง๊ด€์ ์œผ๋กœ 150~180๋ช…์„ ์ด์•ผ๊ธฐํ•˜๋ฉฐ ๋ณดํ†ต 100์„ ๋„˜๋Š”๋‹ค.

  • ์‹ค์ œ๋กœ๋Š” 23๋ช…์ด ์žˆ์„ ๋•Œ 50.7%์˜ ํ™•๋ฅ ์„ ๊ฐ€์ง„๋‹ค

๋ชจ๋‘์˜ ์ƒ์ผ์ด ๊ฐ™์ง€ ์•Š์„ ํ™•๋ฅ 

  • ์ด๋ฅผ 1์—์„œ ๋นผ๋ฉด ์ ์–ด๋„ ๋‘ ๋ช…์ด ์ƒ์ผ์ด ๊ฐ™์„ ํ™•๋ฅ ์„ ๊ตฌํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™๋‹ค

  • P(no match) = 365โ‹…364โ‹…ย ย โ‹ฏย ย โ‹…(365โˆ’k+1)365k \frac {365 \cdot 364 \cdot \ \ \cdots \ \ \cdot (365 - k + 1)} {365^k}365k365โ‹…364โ‹…ย ย โ‹ฏย ย โ‹…(365โˆ’k+1)โ€‹ : 365๊ฐœ์˜ ๋‚ ์งœ ์ค‘ 1๋ช…์ด ํ•œ ๋‚ ์งœ๋ฅผ ์ฐจ์ง€ํ•˜๋ฉด ๋‹ค๋ฅธ 1๋ช…์€ ๋‚จ์€ 364๊ฐœ์˜ ๋‚ ์งœ ์ค‘ ํ•œ ๋‚ ์งœ๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•

  • P(match)

    • 50.7% if k = 23

    • 97.0% if k = 50

    • 99.999% if k = 100

k์— ๋Œ€ํ•œ ์ง๊ด€

  • (k2)=k(kโˆ’1)2 {k \choose 2} = {k(k-1) \over 2} (2kโ€‹)=2k(kโˆ’1)โ€‹

  • (232)=23โ‹…222=253 {23 \choose 2} = {23 \cdot 22 \over 2} = 253 (223โ€‹)=223โ‹…22โ€‹=253

    • 23์€ ์ž‘์€ ์ˆ˜์ง€๋งŒ, 23๋ช…์ด ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ์Œ์˜ ์ˆ˜๋Š” 253๊ฐœ์ด๋ฉฐ ์ถฉ๋ถ„ํžˆ ์ ์–ด๋„ ํ•œ์Œ์ด ์ƒ์ผ์ด ๊ฐ™์€์ง€ ๋น„๊ตํ•  ์ˆ˜๋กœ๋Š” ์ž‘์€ ์ˆ˜๋Š” ์•„๋‹ˆ๋‹ค

  • ์ƒ์ผ์ด ๊ฐ™๊ฑฐ๋‚˜ ํ•˜๋ฃจ ์ฐจ์ด ๋‚  ํ™•๋ฅ 

    • about 50% if k = 14

ํ™•๋ฅ  ์ •๋ฆฌ

  • ๊ธฐ๋ณธ ์ •๋ฆฌ

    • P(โˆ…\varnothingโˆ…) = 0, P(S) = 1 and it also means 0โ‰คP(A)โ‰ค1 0 \le P(A) \le 1 0โ‰คP(A)โ‰ค1

    • P(โˆชn=1โˆž)=โˆ‘n=1โˆžP(An)ย ย ย ย ifย ย Anย ย isย ย disjointย ย withย ย Am(m=ฬธn) P (\cup^\infty_{n=1}) = \sum^\infty_{n=1}P(A_n) \ \ \ \ if \ \ A_n \ \ is \ \ disjoint\ \ with \ \ A_m(m \not= n)P(โˆชn=1โˆžโ€‹)=โˆ‘n=1โˆžโ€‹P(Anโ€‹)ย ย ย ย ifย ย Anโ€‹ย ย isย ย disjointย ย withย ย Amโ€‹(m๎€ =n)

  • ์†์„ฑ

    • P(Ac)=1โˆ’P(A) P(A^c) = 1 - P(A) P(Ac)=1โˆ’P(A)

      • Proof

        • 1=P(S)=P(Aโ‹ƒAc)=P(A)+P(Ac)ย ย sinceAโ‹‚Ac=โˆ… 1= P(S) = P(A \bigcup A^c) = P(A) + P(A^c) \ \ since A \bigcap A^c = \varnothing 1=P(S)=P(Aโ‹ƒAc)=P(A)+P(Ac)ย ย sinceAโ‹‚Ac=โˆ…

    • If AโІB A \subseteq B AโІB, then P(A)โ‰คP(B) P(A) \leq P(B) P(A)โ‰คP(B)

      • Proof

        • B=Aโ‹ƒ(Bโ‹‚Ac) B = A \bigcup (B \bigcap A^c) B=Aโ‹ƒ(Bโ‹‚Ac), disjoint

        • P(B)=P(A)โ‹ƒP(Bโ‹‚Ac) P(B) = P(A) \bigcup P(B \bigcap A^c) P(B)=P(A)โ‹ƒP(Bโ‹‚Ac)

    • P(Aโ‹ƒB)=P(A)+P(B)โˆ’P(Aโ‹‚B) P(A \bigcup B) = P(A) + P(B) - P(A \bigcap B) P(Aโ‹ƒB)=P(A)+P(B)โˆ’P(Aโ‹‚B)

      • Proof

        • P(Aโ‹ƒB)=P(Aโ‹ƒ(Bโ‹‚Ac))=P(A)+P(Bโ‹‚Ac)?=P(A)+P(B)โˆ’P(Aโ‹‚B) P(A \bigcup B) = P(A \bigcup (B \bigcap A^c)) = P(A) + P(B \bigcap A^c) ?= P(A) + P(B) - P(A \bigcap B) P(Aโ‹ƒB)=P(Aโ‹ƒ(Bโ‹‚Ac))=P(A)+P(Bโ‹‚Ac)?=P(A)+P(B)โˆ’P(Aโ‹‚B)

        • P(B)=P(Aโ‹‚B)+P(Acโ‹‚B) P(B) = P(A \bigcap B) + P(A^c \bigcap B) P(B)=P(Aโ‹‚B)+P(Acโ‹‚B) => True

        • since, P(Aโ‹‚B),P(Acโ‹‚B) P(A \bigcap B), P(A^c \bigcap B) P(Aโ‹‚B),P(Acโ‹‚B)are disjoint, union is B

      • ํฌํ•จ๋ฐฐ์ œ์˜ ์›๋ฆฌ, inclusion-exclusion

    • P(A1โ‹ƒA2โ‹ƒโ‹ฏโ‹ƒAn)=โˆ‘i=1nP(Ai)โˆ’โˆ‘i<jP(Aiโ‹‚Aj)+โˆ‘i<j<kP(Aiโ‹‚Ajโ‹‚Ak)โˆ’โ‹ฏ+(โˆ’1)n+1P(Aiโ‹‚โ‹ฏโ‹‚An) P(A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n) = \sum_{i=1} ^n P(A_i) - \sum_{i \lt j} P(A_i \bigcap A_j) + \sum_{i \lt j \lt k} P(A_i \bigcap A_j \bigcap A_k) - \cdots + (-1)^{n+1}P(A_i \bigcap \cdots \bigcap A_n)P(A1โ€‹โ‹ƒA2โ€‹โ‹ƒโ‹ฏโ‹ƒAnโ€‹)=โˆ‘i=1nโ€‹P(Aiโ€‹)โˆ’โˆ‘i<jโ€‹P(Aiโ€‹โ‹‚Ajโ€‹)+โˆ‘i<j<kโ€‹P(Aiโ€‹โ‹‚Ajโ€‹โ‹‚Akโ€‹)โˆ’โ‹ฏ+(โˆ’1)n+1P(Aiโ€‹โ‹‚โ‹ฏโ‹‚Anโ€‹)

๋ชฝ๋ชจ๋ฅดํŠธ ๋ฌธ์ œ : ๋“œ ๋ชฝ๋ชจ๋ฅดํŠธ๊ฐ€ ๋งŒ๋“  ๋ฌธ์ œ

  • ๋„๋ฐ•์—์„œ ์ฒ˜์Œ ๋‚˜์˜จ ๋ฌธ์ œ

  • 1๋ถ€ํ„ฐ n๊นŒ์ง€ ์ ํ˜€์žˆ๊ณ  ๊ฐ ์ˆ˜๋งˆ๋‹ค ํ•œ ์žฅ๋งŒ ์กด์žฌํ•˜๋Š” ์นด๋“œ ๋ญ‰์น˜๊ฐ€ ์กด์žฌ

  • ์นด๋“œ๋ฅผ ์…”ํ”Œ ํ›„, ์นด๋“œ ๋ญ‰์น˜์— ์žˆ๋Š” ์นด๋“œ์˜ ์ˆœ์„œ์™€ ์นด๋“œ์˜ ๊ฐ’์ด ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ ์Šน๋ฆฌ

  • ํฌํ•จ๋ฐฐ์ œ์˜ ์›๋ฆฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ‘ธ๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ์‰ฝ๋‹ค

  • P(Aj)=1n P(A_j) = {1 \over n} P(Ajโ€‹)=n1โ€‹, j์นด๋“œ๊ฐ€ j-th์— ์žˆ์„ ํ™•๋ฅ , ์ด ๋•Œ j์— ๋Œ€ํ•œ ์‹์ด ์•„๋‹ˆ๋‹ค

  • P(A1โ‹‚A2)=(nโˆ’2)!n!=1n(nโˆ’1) P(A_1 \bigcap A_2) = { (n-2)! \over n!} = {1 \over n(n-1)} P(A1โ€‹โ‹‚A2โ€‹)=n!(nโˆ’2)!โ€‹=n(nโˆ’1)1โ€‹, n๊ฐœ์˜ ์นด๋“œ ์ค‘ 1๊ณผ 2๊ฐ€ ๊ฐ๊ฐ ์ฒซ๋ฒˆ์งธ์™€ ๋‘๋ฒˆ์งธ์— ์žˆ์–ด์•ผ ํ•จ

  • P(A1โ‹‚โ‹ฏโ‹‚AK)=(nโˆ’k)!n! P(A_1 \bigcap \cdots \bigcap A_K) = { (n-k)! \over n!}P(A1โ€‹โ‹‚โ‹ฏโ‹‚AKโ€‹)=n!(nโˆ’k)!โ€‹

  • P(A1โ‹ƒโ‹ฏโ‹ƒAK)=nโ‹…1nโˆ’n(nโˆ’1)2!1n(nโˆ’1)+n(nโˆ’1)(nโˆ’2)3!1(n(nโˆ’1)(nโˆ’2)โˆ’โ‹ฏ=1โˆ’12!+โ‹ฏ+(โˆ’1)n1n!=1โˆ’1e P(A_1 \bigcup \cdots \bigcup A_K) = n \cdot {1 \over n} - {n(n-1) \over 2! }{1 \over n(n-1)} + { n(n-1)(n-2) \over 3! }{1 \over (n(n-1)(n-2)} - \cdots \\ = 1 - {1 \over 2!} + \cdots + (-1)^n {1 \over n!} = 1 - {1 \over e}P(A1โ€‹โ‹ƒโ‹ฏโ‹ƒAKโ€‹)=nโ‹…n1โ€‹โˆ’2!n(nโˆ’1)โ€‹n(nโˆ’1)1โ€‹+3!n(nโˆ’1)(nโˆ’2)โ€‹(n(nโˆ’1)(nโˆ’2)1โ€‹โˆ’โ‹ฏ=1โˆ’2!1โ€‹+โ‹ฏ+(โˆ’1)nn!1โ€‹=1โˆ’e1โ€‹

  • ํ…Œ์ผ๋Ÿฌ ๊ธ‰์ˆ˜์™€ ๋น„์Šทํ•œ ๋ชจ์–‘

: wight vector

: bias

์ด๋ฉด ํด๋ž˜์Šค 1๋กœ ํŒ๋ณ„, <0์ด๋ฉด ํด๋ž˜์Šค 2๋กœ ํŒ๋ณ„

๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด ์œ„

โ†’ ์ฆ‰, ๋Š” ๊ฒฐ์ •๊ฒฝ๊ณ„๋ฉด์— ์ˆ˜์ง

์ด๋ฉด, ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด์€ ์›์ ์œผ๋กœ๋ถ€ํ„ฐ w๊ฐ€ ํ–ฅํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ฉ€์–ด์ ธ์žˆ์Œ.

์ด๋ฉด, ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด์€ ์›์ ์œผ๋กœ๋ถ€ํ„ฐ w๊ฐ€ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ๋ฉ€์–ด์ ธ์žˆ์Œ.

์ฆ‰, ๋Š” ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด ์œ„์น˜ ๊ฒฐ์ •โ—

์ด๋ฉด, x๋Š” ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด ๊ธฐ์ค€์œผ๋กœ w๊ฐ€ ํ–ฅํ•˜๋Š” ๋ฐฉํ–ฅ์— ์žˆ์Œ

์ด๋ฉด, x๋Š” ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฉด ๊ธฐ์ค€์œผ๋กœ -w๊ฐ€ ํ–ฅํ•˜๋Š” ๋ฐฉํ–ฅ์— ์žˆ์Œ.

์˜ ์ ˆ๋Œ“๊ฐ’์ด ํด์ˆ˜๋ก ๋” ๋ฉ€๋ฆฌ ๋–จ์–ด์ ธ์žˆ์Œ.

(์ˆ˜์‹ ๋‹จ์ˆœํ™”) ๊ฐ€์งœ์ž…๋ ฅ dummy input ์ด์šฉ

ํด๋ž˜์Šค ์— ๋Œ€ํ•ด ํ‘œํ˜„ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

์ผ ๋•Œ, ๋ฅผ ๋งŒ์กฑํ•˜๋ฉด, x๋ฅผ ํด๋ž˜์Šค ๋กœ ํŒ๋ณ„

ํ–‰๋ ฌ ์— ๋Œ€ํ•ด ๋‚˜ํƒ€๋‚ด๋ฉด,

์˜ k๋ฒˆ์งธ ์—ด :

ํ•™์Šต ๋ฐ์ดํ„ฐ , , n๋ฒˆ์งธํ•ญ์ด ์ธ ํ–‰๋ ฌ T, n๋ฒˆ์งธ ํ–‰์ด ์ธ ํ–‰๋ ฌ ์ด ์ฃผ์–ด์กŒ์„ ๋•Œ, ์ œ๊ณฑํ•ฉ ์—๋Ÿฌํ•จ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๊ณ  ์‹ ์ „๊ฐœํ•˜๋ฉด,

( : pseudo-inverse ํ–‰๋ ฌ)

์—ฌ๊ธฐ์„œ ์ด๋ฉฐ, f๋Š” ํ™œ์„ฑํ•จ์ˆ˜(activation function)๋กœ ๊ณ„๋‹จํ˜• ํ•จ์ˆ˜์ž„

: ์ž˜๋ชป ๋ถ„๋ฅ˜๋œ ๋ฐ์ดํ„ฐ๋“ค์˜ ์ง‘ํ•ฉ

๋ชจ๋ธ๋ง ํ•œ ๋‹ค์Œ โ†’ ํด๋ž˜์Šค์˜ ์‚ฌํ›„ํ™•๋ฅ  ์„ ๊ตฌํ•จโ— (using ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ)

(a์— ๊ด€ํ•œ logistic sigmoid function)

๋Œ€์นญ :

์—ญ(inverse) :

(a์— ๊ด€ํ•œ softmax function)

๊ฐ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๊ณ , ๋ชจ๋“  ํด๋ž˜์Šค์— ๋Œ€ํ•ด ๊ณต๋ถ„์‚ฐ์ด ๋™์ผํ•˜๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์ž.

์‹ค์ œ ๋ฐ์ดํ„ฐ ์— ๋Œ€ํ•ด ์ด๋ฉด ํด๋ž˜์Šค 1๋กœ ๋ถ„๋ฅ˜ํ•˜๊ณ , ์€ ํด๋ž˜์Šค 2๋กœ ๋ถ„๋ฅ˜.

๋ผ ํ• ๋•Œ, ๊ตฌํ•˜๊ณ ์žํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” โ—

๊ฐ ํŠน์„ฑ ์ด 0 ๋˜๋Š” 1, ํ•˜๋‚˜์˜ ๊ฐ’๋งŒ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ

์ด๋•Œ, ์ด๋ฉฐ, ์œ„ ์‹์„ k-class์˜ ์— ๋Œ€์ž…ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

ํ•จ์ˆ˜๊ฐ€ ํ•จ์ˆ˜์— ๋Œ€ํ•ด ์„ ํ˜•์ธ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Œ.

sigmoid ํ•จ์ˆ˜-์œ„ํ‚ค๋ฐฑ๊ณผ ์ฐธ๊ณ 
https://github.com/sujiny-tech/k-digital-training-AI-dev/blob/main/Machine-Learning-basics/Linear%20Models%20for%20Classification.md