๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜] PART 02 AI Background
  • 01 ์ธ๊ณต์ง€๋Šฅ(๋”ฅ๋Ÿฌ๋‹)์˜ ์ •์˜์™€ ์‚ฌ๋ก€
  • 02 ํŒŒ์ดํ† ์น˜
  • 03 ๋จธ์‹ ๋Ÿฌ๋‹์˜ ์ •์˜์™€ ์ข…๋ฅ˜
  • 04 ๊ณผ์ ํ•ฉ
  • [AI ์Šค์ฟจ 1๊ธฐ] 9์ฃผ์ฐจ DAY 5
  • Big Data : ML Pipeline๊ณผ Tuning ์†Œ๊ฐœ
  • Big Data : ๋ฒ”์šฉ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํŒŒ์ผ ํฌ๋งท : PMML
  • Big Data : ์ด์ •๋ฆฌ

Was this helpful?

  1. 2021 TIL
  2. FEB

5 Fri

[ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜] PART 02 AI Background

01 ์ธ๊ณต์ง€๋Šฅ(๋”ฅ๋Ÿฌ๋‹)์˜ ์ •์˜์™€ ์‚ฌ๋ก€

์ธ๊ณต์ง€๋Šฅ

  • ์ธ๊ฐ„์˜ ์ง€๋Šฅ์œผ๋กœ ํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌ๊ณ  ํ•™์Šต, ์ž๊ธฐ ๊ฐœ๋ฐœ ๋“ฑ์„ ์ปดํ“จํ„ฐ๊ฐ€ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•˜๋Š” ์ปดํ“จํ„ฐ ๊ณตํ•™ ๋ฐ ์ •๋ณด ๊ธฐ์ˆ ์˜ ํ•œ ๋ถ„์•ผ๋กœ, ์ปดํ“จํ„ฐ๊ฐ€ ์ธ๊ฐ„์˜ ์ง€๋Šฅ์ ์ธ ํ–‰๋™์„ ๋ชจ๋ฐฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ

  • ์ปดํ“จํ„ฐ๊ฐ€ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ธฐ์ˆ 

์ธ๊ณต์ง€๋Šฅ์˜ ์‚ฌ๋ก€

  • ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜

  • ๊ฐ์ฒด ํƒ์ง€

  • ํ…์ŠคํŠธ

    • ๊ธฐ๊ณ„ ๋ฒˆ์—ญ

    • ๋ฌธ์žฅ(๋˜๋Š” ๋ฌธ์„œ) ๋ถ„๋ฅ˜

    • ์งˆ์˜ ์‘๋‹ต ์‹œ์Šคํ…œ

    • ๊ฐœ์ฒด๋ช… ์ธ์‹

  • ์•ŒํŒŒ๊ณ 

  • GAN

    • Generative Adversarial Networks

  • Style Transfer

    • ๋‚˜์˜ ์‚ฌ์ง„์„ ๊ณ ํํ’์œผ๋กœ ๋ฐ”๊ฟ”์ฃผ๊ฑฐ๋‚˜ ๋‚ฎ ํ’๊ฒจ์˜ ์‚ฌ์ง„์„ ๋ฐค ํ’๊ฒฝ์˜ ์‚ฌ์ง„์œผ๋กœ ๋ฐ”๊ฟ”์ฃผ๋Š” ๊ฒƒ

  • Deepfake

02 ํŒŒ์ดํ† ์น˜

  • ํ…์„œํ”Œ๋กœ์šฐ

    • ๊ตฌ๊ธ€์ด ๋งŒ๋“ค์—ˆ๊ณ  ํŒŒ์ดํ† ์น˜๋ณด๋‹ค ๋จผ์ € ์ถœ์‹œ๋จ

    • ์ฝ”๋“œ๊ฐ€ ์ง๊ด€์ ์ด์ง€ ์•Š๊ณ  ๋””๋ฒ„๊น…์ด ์–ด๋ ต๋‹ค

    • ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด 2.0 ๋ฒ„์ „ ์ด์ƒ์—์„œ๋Š” ์ผ€๋ผ์Šค๋ฅผ ์ด์šฉํ•ด ๊ฐ€๋…์„ฑ๊ณผ ํŽธ์˜์„ฑ์„ ์ œ๊ณต

  • ํŒŒ์ดํ† ์น˜

    • ํŽ˜์ด์Šค๋ถ์ด ๋งŒ๋“ค์—ˆ๋‹ค

    • ์ฝ”๋“œ๊ฐ€ ์ง๊ด€์ ์ด๊ณ  ๋””๋ฒ„๊น…์ด ์ƒ๋Œ€์ ์œผ๋กœ ์‰ฌ์šฐ๋ฉฐ ์ฝ”๋“œ ์ปค์Šคํ…€์ด ์‰ฝ๋‹ค

03 ๋จธ์‹ ๋Ÿฌ๋‹์˜ ์ •์˜์™€ ์ข…๋ฅ˜

๋จธ์‹ ๋Ÿฌ๋‹๊ณผ ์ธ๊ณต์ง€๋Šฅ

  • ์ •์˜๋Š” ๋™์ผํ•˜์ง€๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๋ถ„์•ผ๊ฐ€ ๋‹ค๋ฅด๋‹ค.

  • ๋จธ์‹ ๋Ÿฌ๋‹์€ ํ–‰๊ณผ ์—ด์ด ์กด์žฌํ•˜๋Š” ํ–‰๋ ฌ์„ ์ด์šฉํ•ด ์˜ˆ์ธก ๋˜๋Š” ๋ถ„๋ฅ˜๋ฅผ ํ•  ๋•Œ ์‚ฌ์šฉ

  • ์ด๋ฏธ์ง€์™€ ํ…์ŠคํŠธ ๊ฐ™์€ ์ •ํ˜•ํ™”๋˜์–ด ์žˆ์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์ธ๊ณต์ง€๋Šฅ(๋”ฅ๋Ÿฌ๋‹)์„ ์‚ฌ์šฉํ•œ๋‹ค.

  • ํฌ๊ฒŒ ๋ณด๋ฉด ๋จธ์‹ ๋Ÿฌ๋‹์€ ์ธ๊ณต์ง€๋Šฅ ์•ˆ์— ํฌํ•จ๋˜๋Š” ๊ฐœ๋…์ด์ง€๋งŒ ๋Œ€์ค‘์—๊ฒŒ๋Š” ํ˜ผ์šฉํ•ด์„œ ์‚ฌ์šฉํ•œ๋‹ค.

๋จธ์‹ ๋Ÿฌ๋‹์˜ ์ข…๋ฅ˜

  • ๋ชจ๋ธํ•™์Šต

    • ํ•™์Šต ๋ชฉํ‘œ๋Š” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ๊ฐ€ ์ •๋‹ต์— ๊ฐ€๊น๊ฒŒ ๋‚˜์˜ค๋„๋ก ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ

  • ์†์‹ค ํ•จ์ˆ˜

    • ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ๊ฐ€ ์‹ค์ œ ์ •๋‹ต๊ณผ ์–ด๋–ค ์ฐจ์ด๊ฐ€ ์žˆ๋Š”์ง€ ์ˆ˜์น˜ํ™”ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด ์ˆ˜์น˜ํ™”๋œ ์ฐจ์ด๋ฅผ ํ•จ์ˆ˜ํ™”ํ•œ ๊ฒƒ์„ ์†์‹ค ํ•จ์ˆ˜ ๋˜๋Š” ๋น„์šฉ ํ•จ์ˆ˜ ๋ผ๊ณ  ํ•œ๋‹ค.

    • ๋Œ€ํ‘œ์ ์œผ๋กœ๋Š” Mean Squared Error(MSE)๋ฅผ ๋“ค ์ˆ˜ ์žˆ๋‹ค.

๋จธ์„ ๋Ÿฌ๋‹์˜ ๊ตฌ๋ถ„

  • ์ง€๋„ ํ•™์Šต

    • X๋กœ Y๋ฅผ ์˜ˆ์ธกํ•˜๊ณ  ์‹ถ์„ ๋•Œ ์‚ฌ์šฉ

    • ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ†ตํ•ด ๋งŒ๋“  ์˜ˆ์ธก ๋ชจ๋ธ f๋ฅผ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์ด๋ผ๊ณ  ํ•œ๋‹ค.

    • X๋Š” ๋…๋ฆฝ ๋ณ€์ˆ˜ ๋˜๋Š” Feature ๋ผ๊ณ  ํ•˜๋ฉฐ Y๋Š” ์ข…์† ๋ณ€์ˆ˜, ๋ฐ˜์‘ ๋ณ€์ˆ˜, ํƒ€๊นƒ ๋ณ€์ˆ˜ ๋ผ๊ณ  ํ•œ๋‹ค.

    • ํšŒ๊ท€๋ฌธ์ œ์™€ ๋ถ„๋ฅ˜๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค

  • ๋น„์ง€๋„ ํ•™์Šต

    • ์ง€๋„ํ•™์Šต์˜ ๋ฐ˜๋Œ€ ๊ฐœ๋…

    • X๋ณ€์ˆ˜๋งŒ ์กด์žฌํ•˜๋ฉฐ ๋ช…ํ™•ํ•œ ์ •๋‹ต์€ ์—†๋‹ค

    • ๋…๋ฆฝ ๋ณ€์ˆ˜๋งŒ์œผ๋กœ ์ƒˆ๋กœ์šด Feature๋ฅผ ์ฐพ์•„๋‚ด๊ฑฐ๋‚˜ ๊ตฐ์ง‘ํ™” ํ•˜์—ฌ ์ƒˆ๋กœ์šด ํŒจํ„ด์„ ์ฐพ์•„๋‚ด๋Š” ๊ฒƒ์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค.

    • ๊ตฐ์ง‘ํ™”, ์ฐจ์› ์ถ•์†Œ๋ฒ• ๋“ฑ์ด ์žˆ๋‹ค.

  • ๊ฐ•ํ™” ํ•™์Šต

    • ์ƒํƒœ, ํ–‰๋™, ๋ณด์ƒ, ๋‹ค์Œ ์ƒํƒœ์˜ 4๊ฐ€์ง€ ๊ฐœ๋…์ด ์กด์žฌ

    • ์ˆ˜๋งŽ์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ํ˜„์žฌ ์ƒํƒœ์—์„œ ์–ด๋–ค ํ–‰๋™์„ ์ทจํ•ด์•ผ ๋จผ ๋ฏธ๋ž˜์˜ ๋ณด์ƒ์„ ์ตœ๋Œ€๋กœ ํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ•™์Šตํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜

์ง€๋„ํ•™์Šต ๋ชจ๋ธ์˜ ์ข…๋ฅ˜

  • ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ

    • ๋…๋ฆฝ ๋ณ€์ˆ˜ ํ•˜๋‚˜๋งŒ์œผ๋กœ ์ข…์† ๋ณ€์ˆ˜๋ฅผ ์˜ˆ์ธก ํ•˜๋Š” ๋ชจ๋ธ์„ ๋‹จ์ˆœ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ด๋ผ๊ณ  ํ•œ๋‹ค

    • ๋ณ€์ˆ˜๊ฐ€ ์—ฌ๋Ÿฌ ๊ฐœ์ผ ๋•Œ ์ ํ•ฉ์‹œํ‚ค๋Š” ํšŒ๊ท€ ๋ชจ๋ธ์„ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ ๋ชจ๋ธ์ด๋ผ๊ณ  ํ•œ๋‹ค.

  • ํšŒ๊ท€ ๊ณ„์ˆ˜ ์ถ•์†Œ ๋ชจ๋ธ

    • ๋ณ€์ˆ˜๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์œผ๋ฉด ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์„ ๋†’์•„์ง€์ง€๋งŒ ๋น„ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์„ฑ๋Šฅ์€ ๋‚ฎ์•„์ง„๋‹ค

    • ๊ฐ๊ฐ์˜ ๋ณ€์ˆ˜๊ฐ€ ์„œ๋กœ ์—ฐ๊ด€์„ฑ์ด ์žˆ์„ ๋•Œ ๋ณ€์ˆ˜์˜ ํ•ด์„๋ ฅ๋„ ๋‚ฎ์•„์ง„๋‹ค. (๋ณ€์ˆ˜์˜ ์˜ํ–ฅ๋ ฅ์ด ์ƒ๊ฐ๋ณด๋‹ค ์ž‘์•„์ง„๋‹ค๋Š” ์˜๋ฏธ)

    • ์ ์ ˆํ•œ ๋ณ€์ˆ˜๋งŒ ์„ ํƒํ•ด ๋ชจ๋ธ์— ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”. ์ด ๋ฌธ์ œ๋ฅผ ์™„ํ™”์‹œ์ผœ์ฃผ๋Š” ๋ฐฉ๋ฒ•์ด ํšŒ๊ท€ ๊ณ„์ˆ˜ ์ถ•์†Œ ๋ชจ๋ธ

    • Lasso : ํšŒ๊ท€๊ณ„์ˆ˜๊ฐ€ ์™„์ „ํžˆ 0์ด ๋˜๋„๋ก ์ถ•์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค

    • Ridge : ํšŒ๊ท€๊ณ„์ˆ˜๊ฐ€ 0์œผ๋กœ ๊ฐ€๊นŒ์›Œ์ง€๊ธด ํ•˜์ง€๋งŒ ์™„์ „ํžˆ 0์ด ๋˜์ง€ ์•Š๋Š”๋‹ค

    • ElasticNet : Lasso์™€ Ridge์˜ ์ค‘๊ฐ„ ๋ชจ๋ธ

  • ์˜์‚ฌ ๊ฒฐ์ • ๋‚˜๋ฌด

  • k-NN

    • ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด k๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด ํ•ด๋‹น ๋ฐ์ดํ„ฐ์˜ ์ถœ๋ ฅ ๊ฐ’์„ ์˜ˆ์ธกํ•˜๋Š” ์ง๊ด€์ ์ธ ๋ชจ๋ธ

    • k๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์‚ฌ์ „์— ์ง€์ •ํ•ด์•ผ ํ•˜๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๋ฐ์ดํ„ฐ ๊ฐ„ ๊ฑฐ๋ฆฌ ์ธก์ • ์ง€ํ‘œ๋‚˜ k๊ฐœ์˜ ๋ฐ์ดํ„ฐ์˜ ์ •๋ณด๋ฅผ ์ข…ํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์„ ํƒํ•ด ๋ชจ๋ธ์˜ ๋ณ€ํ™”๋ฅผ ์ค„ ์ˆ˜ ์žˆ๋‹ค

  • ์‹ ๊ฒฝ๋ง

    • ๋”ฅ๋Ÿฌ๋‹์˜ ๊ธฐ์ดˆ๊ฐ€ ๋˜๋Š” ๋ชจ๋ธ

    • ํ•™์Šต์— ์‚ฌ์šฉ๋œ ๋ฐ์ดํ„ฐ์—๋งŒ ์™„๋ฒฝํžˆ ์ ํ•ฉ๋˜๋Š” ๊ณผ์ ํ•ฉ ๋ฌธ์ œ ๋•Œ๋ฌธ์— ์˜ค๋žซ๋™์•ˆ ๋น›์„ ๋ฐœํœ˜ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค

  • SVM

    • Support Vector Machine

    • ์‹ ๊ฒฝ๋ง์˜ ๊ณผ์ ํ•ฉ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฒต์„ ์ œ์‹œํ•œ ๋ชจ๋ธ

    • 2010๋…„๋Œ€ ์ดˆ๋ฐ˜๊นŒ์ง€ ๋„๋ฆฌ ์“ฐ์˜€์ง€๋งŒ ๋ณ€์ˆ˜๋‚˜ ๋ฐ์ดํ„ฐ ์ˆ˜๊ฐ€ ๋งŽ์•„์งˆ์ˆ˜๋ก ํ•™์Šตํ•˜๋Š” ์‹œ๊ฐ„์ด ๋งค์šฐ ์˜ค๋ž˜ ๊ฑธ๋ ค ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ

  • Ensemble Learning

    • ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด ์—ฌ๋Ÿฌ ๋ชจ๋ธ์— ๋Œ€ํ•ด์„œ ๊ฐ€์žฅ ์ข‹์€ ์˜ˆ์ธก ๊ฐ’์„ ์„ ์ •

    • ๋ฐ์ดํ„ฐ๋ฅผ ์žฌ๊ตฌ์„ฑํ•ด ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š” Bagging

    • ๋ฐ์ดํ„ฐ์™€ ๋ณ€์ˆ˜๋ฅผ ๋žœ๋ค์œผ๋กœ ์ถ”์ถœํ•ด ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š” RandomForest

    • ์ž˜ ๋งž์ถ”์ง€ ๋ชปํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ข€ ๋” ์ง‘์ค‘์ ์œผ๋กœ ํ•™์Šต์‹œํ‚ค๋Š” Boosting(์ผ๋ฐ˜์ ์œผ๋กœ ๋งŽ์ด ์“ฐ์ž„)

    • ์—ฌ๋Ÿฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ๊ฐ’์„ ๋‹ค์‹œ ๋…๋ฆฝ ๋ณ€์ˆ˜๋กœ ํ™œ์šฉํ•˜๋Š” Stacking(์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ ค ์ž˜ ์“ฐ์ด์ง€ ์•Š์Œ)

04 ๊ณผ์ ํ•ฉ

๊ณผ์ ํ•ฉ์ด ๋ฐœ์ƒํ•˜๋Š” ์›์ธ

  • ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ : ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ(ํ‘œ๋ณธ)๋งŒ ๊ฐ€์ง€๊ณ  ์ „์ฒด ๋ฐ์ดํ„ฐ(๋ชจ์ง‘๋‹จ)๋ฅผ ์˜ˆ์ธกํ•˜๋ ค๊ณ  ํ•˜๊ธฐ ๋•Œ๋ฌธ

  • ํ•™์Šตํ•  ์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ์ˆ˜์˜ ๋ถ€์กฑ

  • ํ’€๊ณ ์ž ํ•˜๋Š” ๋ฌธ์ œ์— ๋น„ํ•ด ๋ณต์žกํ•œ ๋ชจ๋ธ์„ ์ ์šฉ

  • ์ ํ•ฉ์„ฑ ํ‰๊ฐ€ ๋ฐ ์‹คํ—˜ ์„ค๊ณ„

    • ๊ฐ–๊ณ  ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ ์ ˆํžˆ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋กœ ๋ถ„ํ• 

    • ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ๋ชจ๋ธ์„ ํ•™์Šตํ•œ ํ›„ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์— ๋ชจ๋ธ์„ ์ ์šฉ์‹œ์ผœ ๊ณผ์ ํ•ฉ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จ

    • ๋ฐ์ดํ„ฐ ์ˆ˜๊ฐ€ ์ ์„ ๋•Œ๋Š” ๊ฒ€์ฆ๋ฐ์ดํ„ฐ์™€ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ํ• ๋‹น์ด ๋ถ€๋‹ด์Šค๋Ÿฌ์šธ ์ˆ˜ ์žˆ๋‹ค. ์ด ๋•Œ๋Š” K-Fold Croos Validation ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค.

      • ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ K๊ฐœ๋กœ ๋ถ„ํ•  ํ•ด ๊ฐ ๋ฐ์ดํ„ฐ๋งˆ๋‹ค 1๋ฒˆ์„ ๊ฒ€์ฆ, K-1๋ฒˆ์„ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ท ์ ์ธ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•

[AI ์Šค์ฟจ 1๊ธฐ] 9์ฃผ์ฐจ DAY 5

Big Data : ML Pipeline๊ณผ Tuning ์†Œ๊ฐœ

Spark MLlib ๋ชจ๋ธ ํŠœ๋‹

  • ์ตœ์ ์˜ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ ํƒ

    • ๋ชจ๋ธ ๋ฐ–์— ์žˆ๋Š” ์ธ์ž๋ฅผ ์˜๋ฏธ

    • ํ•˜๋‚˜์”ฉ ํ…Œ์ŠคํŠธ ํ•˜๊ธฐ vs ๋‹ค์ˆ˜๋ฅผ ๋™์‹œ์— ํ…Œ์ŠคํŠธ ํ•˜๊ธฐ

  • ๋ชจ๋ธ ํ…Œ์ŠคํŠธ ๋ฐฉ๋ฒ•

    • ๊ต์ฐจ ๊ฒ€์ฆ

    • ํ›ˆ๋ จ/ํ…Œ์ŠคํŠธ์…‹ ๋‚˜๋ˆ„๊ธฐ

Spark MLlib ๋ชจ๋ธ ํ…Œ์ŠคํŠธ

  • ํ›ˆ๋ จ์šฉ๊ณผ ํ…Œ์ŠคํŠธ์šฉ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ํ…Œ์ŠคํŠธ

    • ํ™€๋“œ์•„์›ƒ ํ…Œ์ŠคํŠธ๋ผ๊ณ  ํ•˜๊ธฐ๋„ ํ•จ

    • 80 : 20 ๋˜๋Š” 75 : 25๋กœ ๋‚˜๋ˆˆ๋‹ค

  • ๊ต์ฐจ๋ถ„์„ ํ…Œ์ŠคํŠธ

    • K-Fold ํ…Œ์ŠคํŠธ ๋ผ๊ณ  ๋ถ€๋ฅด๊ธฐ๋„ ํ•จ

  • ๋ชจ๋ธ ์„ ํƒ์‹œ ์ž…๋ ฅ

    • Estimator

      • ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‚˜ ๋ชจ๋ธ ๋น™๋”ฉ ํŒŒ์ดํ”„๋ผ์ธ

    • Evaluator

Big Data : ๋ฒ”์šฉ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ํŒŒ์ผ ํฌ๋งท : PMML

๋‹ค์–‘ํ•œ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ฐœ๋ฐœ ํ”Œ๋žซํผ

  • Scikit-Learn, PyTorch, Tensorflow, Spark MLlib

  • ํ†ต์šฉ๋˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ํŒŒ์ผํฌ๋งท์ด ํ•„์š”

    • PMML, MLeap์ด ๋Œ€ํ‘œ์ 

  • ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ ์„œ๋น™ํ™˜๊ฒฝ์˜ ํ†ต์ผ์ด ๊ฐ€๋Šฅ

    • ์‹ค์ œ๋กœ๋Š” ์ง€์› ๊ธฐ๋Šฅ์ด ๋ฏธ์•ฝํ•ด์„œ ๋ณต์žกํ•œ ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ์—๋Š” ์ง€์›๋ถˆ๊ฐ€

PMML

  • Predictive Model Markup Language

  • ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋งˆํฌ์—… ์–ธ์–ด๋กœ ํ‘œํ˜„ํ•ด์ฃผ๋Š” XML ์–ธ์–ด

  • ์ ˆ์ฐจ

    1. ML Pipeline์„ PMML ํŒŒ์ผ๋กœ ์ €์žฅ

      • pyspark2pmml ํŒŒ์ด์ฌ ๋ชจ๋“ˆ์ด ํ•„์š”

    2. PMML ํŒŒ์ผ์„๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ ์˜ˆ์ธก API๋กœ ๋ก ์น˜

    3. ์ด API๋กœ ์ •๋ณด๋ฅผ ๋ณด๋‚ด๊ณ  ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ๋ฐ›๋Š” ํด๋ผ์ด์–ธํŠธ ์ฝ”๋“œ ์ž‘์„ฑ

Big Data : ์ด์ •๋ฆฌ

Spark

  • ์ฐจ์„ธ๋Œ€ ๋ถ„์‚ฐ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ํ”„๋ ˆ์ž„์›Œํฌ

  • ์ •๋ง ๋ฐ์ดํ„ฐ๊ฐ€ ํด ๋•Œ ์‚ฌ์šฉ

๋ฐ์ดํ„ฐ ํŒ€์˜ ๋ฐœ์ „

  • ์„œ๋น„์Šค์—์„œ ์ง์ ‘ ์ƒ๊ธฐ๋Š” ๋ฐ์ดํ„ฐ์™€ ์จ๋“œํŒŒํ‹ฐ๋ฅผ ํ†ตํ•ด ์ƒ๊ธฐ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ์ดํ„ฐ ์›จ์–ดํ•˜์šฐ์Šค์— ์ €์žฅ

  • ๋ฐ์ดํ„ฐ ๋ถ„์„ => ์ง€ํ‘œ ์ •์˜, ์‹œ๊ฐํ™”

  • ๋ฐ์ดํ„ฐ ๊ณผํ•™ ์ ์šฉ

Previous6 SatNext4 Thu

Last updated 4 years ago

Was this helpful?