๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜] PART 03 Deep Learning
  • 01 ๋”ฅ๋Ÿฌ๋‹์˜ ์ •์˜
  • 02 ๋”ฅ๋Ÿฌ๋‹์ด ๋ฐœ์ „ํ•˜๊ฒŒ ๋œ ๊ณ„๊ธฐ
  • 03 ๋”ฅ๋Ÿฌ๋‹์˜ ์ข…๋ฅ˜
  • 04 ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์„ ์ด๋ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜ - 1

Was this helpful?

  1. 2021 TIL
  2. FEB

7 Sun

[ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜] PART 03 Deep Learning

01 ๋”ฅ๋Ÿฌ๋‹์˜ ์ •์˜

๋”ฅ๋Ÿฌ๋‹

  • ์ƒˆ๋กœ์šด ๋ชจ๋ธ์˜ ๊ฐœ๋…์ด ์•„๋‹Œ ์‹ ๊ฒฝ๋ง์ด ๋ฐœ์ „ํ•œ ๋ชจ๋ธ

  • ์‹ ๊ฒฝ๋ง์€ ํ•™์Šตํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํŠน์„ฑ์ƒ ๊ณผ์ ํ•ฉ์ด ์‹ฌํ•˜๊ฒŒ ์ผ์–ด๋‚˜๊ณ  Gradient Vanishing์ด ๋ฐœ์ƒํ•œ๋‹ค.

  • ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด SVM๊ณผ Ensemble Learning์ด ๋งŽ์ด ์“ฐ์ธ๋‹ค.

  • ๋”ฅ๋Ÿฌ๋‹์€ 2๊ฐœ ์ด์ƒ์˜ ์€๋‹‰์ธต์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ๋‹ค์ธต ์‹ ๊ฒฝ๋ง

  • ๋”ฅ๋Ÿฌ๋‹์ด ๋ณธ๊ฒฉ์ ์œผ๋กœ ๋ฐœ์ „ํ•˜๊ฒŒ ๋œ ๊ฒƒ์€ Graphical Representation Learning์ด๋ผ๋Š” ํŠน์ง• ๋•Œ๋ฌธ

02 ๋”ฅ๋Ÿฌ๋‹์ด ๋ฐœ์ „ํ•˜๊ฒŒ ๋œ ๊ณ„๊ธฐ

  • ๊ณผ์ ํ•ฉ๊ณผ Gradient Vanishing์„ ์™„ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋ฐœ์ „

  • GPU๋ฅผ ์‹ ๊ฒฝ๋ง์˜ ์—ฐ์‚ฐ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๋ฉด์„œ ํ•™์Šต ์‹œ๊ฐ„์ด ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ

03 ๋”ฅ๋Ÿฌ๋‹์˜ ์ข…๋ฅ˜

  • MLP

  • CNN : ์ด๋ฏธ์ง€ ๊ด€๋ จ ๋ถ„์•ผ์—์„œ ๋งŽ์ด ์‚ฌ์šฉ

  • RNN : ํ…์ŠคํŠธ๊ฐ™์€ ์‹œ๊ณ„์—ด ๋ถ„์•ผ์— ๋งŽ์ด ์‚ฌ์šฉ

04 ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐœ์ „์„ ์ด๋ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜ - 1

Dropout

  • ์‹ ๊ฒฝ๋ง์˜ ํ•™์Šต ๊ณผ์ • ์ค‘ Layer์˜ ๋…ธ๋“œ๋ฅผ ๋žœ๋คํ•˜๊ฒŒ Dropํ•จ์œผ๋กœ์จ Generalization ํšจ๊ณผ๋ฅผ ๊ฐ€์ ธ์˜ค๊ฒŒ ํ•˜๋Š” ํ…Œํฌ๋‹‰

  • ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์•„์ด๋””์–ด๋ฅผ ์ฐจ์šฉ

  • MNIST๋ผ๋Š” ์†๊ธ€์”จ ๋ฐ์ดํ„ฐ์— Dropout์„ ์ ์šฉํ•œ ์‹ ๊ฒฝ๋ง๊ณผ ์ ์šฉํ•˜์ง€ ์•Š์€ ์‹ ๊ฒฝ๋ง์˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๋ฉด Dropout์„ ์ ์šฉํ•œ ์‹ ๊ฒฝ๋ง์ด Test Error๊ฐ€ ๋” ๋‚ฎ๋‹ค.

  • Ensemble Learning์˜ Random Forest์˜ ๊ฐœ๋…๊ณผ ๋น„์Šทํ•˜๋‹ค

    • Ensemble Learning์˜ ๊ธฐ๋ณธ ๊ฐœ๋…์€ ๋‹ค์–‘ํ•œ ๋ชจ๋ธ

    • ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ๋žœ๋คํ•˜๊ฒŒ ๊ตฌ์„ฑํ•˜๊ณ  ๋ณ€์ˆ˜๋„ ๋žœ๋คํ•˜๊ฒŒ ๊ตฌ์„ฑํ•œ ๊ฒƒ์ด RandomForest

    • Dropout์„ ๋žœ๋คํ•œ ๋ณ€์ˆ˜์˜ ๊ตฌ์„ฑ์œผ๋กœ ๋ณด๋ฉด ๋น„์Šทํ•œ ๋ชจ๋ธ ๊ตฌ์„ฑ

Activation ํ•จ์ˆ˜

  • ReLU

    • Rectified Linear Unit

    • ์‹œ๊ทธ๋ชจ๋””์œผ ํ•จ์ˆ˜์™€ ๊ฐ™์€ ๋น„์„ ํ˜• ํ™œ์„ฑ ํ•จ์ˆ˜์˜ ๋ฌธ์ œ์ ์„ ์–ด๋А ์ •๋„ ํ•ด๊ฒฐ => Gradient Vanishing ์™„ํ™”

    • f(x) = max(0, x)

    • ์ดํ›„๋กœ Leaky ReLU, ELU, parametric ReLU, SELU, SERLU ๋“ฑ ๋‹ค์–‘ํ•œ ํ™œ์„ฑํ•จ์ˆ˜ ๋“ฑ์žฅ

Batch Normalization

  • ์‹ ๊ฒฝ๋ง์—๋Š” ๊ณผ์ ํ•ฉ๊ณผ GV ์™ธ์—๋„ Internal Covariance shift๋ผ๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒ

    • ๊ฐ ์ธต๋งˆ๋‹ค Input ๋ถ„ํฌ๊ฐ€ ๋‹ฌ๋ผ์ง์— ๋”ฐ๋ผ ํ•™์Šต ์†๋„๊ฐ€ ๋А๋ ค์ง€๋Š” ํ˜„์ƒ

    • Batch Normalization์€ ์ด๋ฅผ ๋ฐฉ์ง€ => Input ๋ถ„ํฌ๋ฅผ ์ •๊ทœํ™”ํ•ด ํ•™์Šต ์†๋„๋ฅผ ๋น ๋ฅด๊ฒŒ ํ•จ

    • ๋Œ€๋ ฅ์ ์ธ ๋А๋‚Œ : ReLU๋Š” ์ž…๋ ฅ๊ฐ’์ด 0๋ณด๋‹ค ํฌ๋ฉด ํ•ญ์ƒ ์ž๊ธฐ ์ž์‹ ์„ Output์œผ๋กœ ์ฃผ๋Š”๋ฐ, ์ด ๊ฐ’์˜ ๋ฒ”์œ„๊ฐ€ ๋„ˆ๋ฌด ๊ฐ€์ง€๊ฐ์ƒ‰์ด๋‹ˆ ์ •๊ทœํ™”๋ฅผ ํ†ตํ•ด ์ผ์ • ๋ฒ”์œ„์•ˆ์˜ ์žˆ๋Š” ๊ฐ’์œผ๋กœ ํ†ต์ผํ•˜๊ฒ ๋‹ค๋ผ๋Š” ๊ฒƒ ๊ฐ™๋‹ค. ์ด ๋•Œ ํ‘œ์ค€๋ถ„ํฌ๋ฅผ ์“ฐ๋Š”๊ฒŒ ์•„๋‹ˆ๋ผ, ๊ฐ ๋ ˆ์ด์–ด๋งˆ๋‹ค ์•ŒํŒŒ ๋ฒ ํƒ€ ๊ฐ๋งˆ๋ฅผ......... ใ… ใ… 

Initialization

  • LeCun Initialization

    • CNN ์ฐฝ์‹œ์ž์˜ ์ด๋ฆ„์„ ๋•€

  • He Initialization

    • Xavier Initialization์„ ๋ณด์™„

Optimizer

  • SGD์ด์™ธ์—๋„ ๋‹ค์–‘ํ•œ Optimizer ์กด์žฌ

  • Momentum

    • ๋ฏธ๋ถ„์„ ํ†ตํ•œ Gradient ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ€๋˜, ์ผ์ข…์˜ ๊ด€์„ฑ์„ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฐœ๋…

    • ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜์„ ๊ฒฝ์šฐ๋ณด๋‹ค ์ตœ์ ์˜ ์žฅ์†Œ๋กœ ๋” ๋น ๋ฅด๊ฒŒ ์ˆ˜๋ ดํ•˜๋ฉฐ ๊ฑธ์–ด๊ฐ€๋Š” ๋ณดํญ์ด ์ปค์ง„ ๊ฐœ๋…์œผ๋กœ ์ดํ•ด ๊ฐ€๋Šฅ

    • ์ตœ์  ํ•ด๊ฐ€ ์•„๋‹Œ ์ง€์—ญํ•ด๋ฅผ ์ง€๋‚˜์น  ์ˆ˜๋„์žˆ๋‹ค๋Š” ์žฅ์ 

  • NAG

    • Nesterov Accelerated Gradient

    • Momentum์„ ์•ฝ๊ฐ„ ๋ณ€ํ˜•ํ•œ ๋ฐฉ๋ฒ•

    • ๋ชจ๋ฉ˜ํ…€์œผ๋กœ ์ด๋™ํ•œ ํ›„ ๊ธฐ์šธ๊ธฐ๋ฅผ ๊ตฌํ•ด ์ด๋™ํ•˜๋Š” ๋ฐฉ์‹

  • Adagrad

    • Adaptive Gradient

    • ๊ฐ€๋ณด์ง€ ์•Š์€ ๊ณณ์€ ๋งŽ์ด ์›€์ง์ด๊ณ  ๊ฐ€๋ณธ ๊ณณ์€ ์กฐ๊ธˆ์”ฉ ์›€์ง์ด์ž

  • RMSProp

    • Adagrad์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•œ ๋ฐฉ๋ฒ• => ํ•™์Šต์ด ์˜ค๋ž˜ ์ง„ํ–‰๋ ์ˆ˜๋ก step size๊ฐ€ ์ž‘์•„์ง€๊ณ  ๋ถ€๋ถ„์ด ๊ณ„์† ์ฆ๊ฐ€ => G(๊ฐฑ์‹ ๋œ ํŒŒ๋ผ๋ฏธํ„ฐ)๊ฐ€ ๋ฌดํ•œํžˆ ์ปค์ง€์ง€ ์•Š๋„๋ก ์ง€์ˆ˜ ํ‰๊ท ์„ ๋‚ด ๊ณ„์‚ฐ

  • Adadelta

    • Adaptive Delta

    • Adagrad์˜ ๋‹จ์ ์„ ๋ณด์™„ํ•œ ๋ฐฉ๋ฒ•

    • Gradient์˜ ์–‘์ด ๋„ˆ๋ฌด ์ ์–ด์ง€๋ฉด ์›€์ง์ž„์ด ๋ฉˆ์ถ”๋Š”๋ฐ, ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•

  • Adam

    • Adaptive Moment Estimation

    • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ๋ณธ์ ์ธ Optimizer

    • RMSProp๊ณผ Momentum ๋ฐฉ์‹์˜ ํŠน์ง•์„ ๊ฒฐํ•ฉํ•œ ๋ฐฉ๋ฒ•

  • RAdam

    • Rectified Adam

    • ๋Œ€๋ถ€๋ถ„์˜ Optimizer๋Š” ํ•™์Šต ์ดˆ๊ธฐ์— ์ „์—ญ ์ตœ์ €์ ์ด ์•„๋‹Œ ์ง€์—ญ ์ตœ์ €์ ์— ์ˆ˜๋ ดํ•ด ๋ฒ„๋ฆด ์ˆ˜ ์žˆ๋Š” ๋‹จ์ ์ด ์žˆ๋Š”๋ฐ ์ด๋ฅผ ๊ต์ •ํ•˜๊ธฐ ์œ„ํ•œ Optimizer

Previous8 MonNext6 Sat

Last updated 4 years ago

Was this helpful?

๋ฅผ ์ฐธ๊ณ ํ•˜๋ฉด ์ดํ•ด์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์Œ(๊ทผ๋ฐ ๋‚œ ์ดํ•ด ์ž˜ ๋ชปํ•จ)

์—ฌ๊ธฐ