21 Wed
๋ฅ๋ฌ๋ CNN ์๋ฒฝ ๊ฐ์ด๋ - Fundamental ํธ
๊ฒฝ์ฌํ๊ฐ๋ฒ์ ์ดํด
๊ฒฝ์ฌํ๊ฐ๋ฒ์ ์ด์ฉํ์ฌ ์ ํํ๊ท ๊ตฌํํ๊ธฐ - 01
# ๋ฐ์ดํฐ ๊ฑด์
N = len(target)
# ์์ธก ๊ฐ.
predicted = w1 * rm + w2*lstat + bias
# ์ค์ ๊ฐ๊ณผ ์์ธก๊ฐ์ ์ฐจ์ด
diff = target - predicted
# bias ๋ฅผ array ๊ธฐ๋ฐ์ผ๋ก ๊ตฌํ๊ธฐ ์ํด์ ์ค์ .
bias_factors = np.ones((N,))
# weight์ bias๋ฅผ ์ผ๋ง๋ updateํ ๊ฒ์ธ์ง๋ฅผ ๊ณ์ฐ.
w1_update = -(2/N)*learning_rate*(np.dot(rm.T, diff))
w2_update = -(2/N)*learning_rate*(np.dot(lstat.T, diff))
bias_update = -(2/N)*learning_rate*(np.dot(bias_factors.T, diff))
# Mean Squared Error๊ฐ์ ๊ณ์ฐ.
mse_loss = np.mean(np.square(diff))๊ฒฝ์ฌํ๊ฐ๋ฒ์ ์ด์ฉํ์ฌ ์ ํํ๊ท ๊ตฌํํ๊ธฐ - 02
ํ๋ฅ ์ ๊ฒฝ์ฌํ๊ฐ๋ฒ๊ณผ ๋ฏธ๋๋ฐฐ์น ๊ฒฝ์ฌํ๊ฐ๋ฒ์ ์ดํด
ํ๋ฅ ์ ๊ฒฝ์ฌํ๊ฐ๋ฒ ๊ตฌํํ๊ธฐ
๋ฏธ๋ ๋ฐฐ์น ๊ฒฝ์ฌํ๊ฐ๋ฒ ๊ตฌํํ๊ธฐ
๊ฒฝ์ฌํ๊ฐ๋ฒ์ ์ฃผ์ ๋ฌธ์
Last updated