22 Thu

๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ

์‹ฌ์ธต์‹ ๊ฒฝ๋ง์˜ ์ดํ•ด์™€ ์˜ค์ฐจ ์—ญ์ „ํŒŒ ๊ฐœ์š”

์ž…๋ ฅ์ธต - ์€๋‹‰์ธต - ์ถœ๋ ฅ์ธต์˜ 3๋‹จ ๊ตฌ์กฐ

  • Feed Forward, ์ˆœ์ „ํŒŒ ์ˆ˜ํ–‰

  • Backpropagation, ์—ญ์ „ํŒŒ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋ฉด์„œ ๊ฐ€์ค‘์น˜ ๊ฐฑ์‹ 

  • ์ด ๋‘ ๊ณผ์ •์„ ๋ฐ˜๋ณต ์ˆ˜ํ–‰

๊ฒฐ๋ก ์ ์œผ๋กœ, ์—ญ์ „ํŒŒ๋ผ๋Š” ๊ฒƒ์€ ์ถœ๋ ฅ์ธต์œผ๋กœ๋ถ€ํ„ฐ ๋ฏธ๋ถ„์„ ๊ณ„์† ์ˆ˜ํ–‰ํ•˜๋ฉด์„œ ์ž…๋ ฅ์ธต๊นŒ์ง€์˜ ๊ฐ€์ค‘์น˜๋ฅผ ์—ฐ์†์ ์œผ๋กœ ๊ฐฑ์‹ ํ•˜๋Š” ๊ฒƒ

์˜ค์ฐจ ์—ญ์ „ํŒŒ(Backpropagation)์˜ ์ดํ•ด - ๋ฏธ๋ถ„์˜ ์—ฐ์‡„ ๋ฒ•์น™

์—ญ์ „ํŒŒ

  • ์ถœ๋ ฅ์ธต๋ถ€ํ„ฐ ์—ญ์ˆœ์œผ๋กœ ๊ธฐ์šธ๊ธฐ๋ฅผ ์ „๋‹ฌํ•˜์—ฌ ์ „์ฒด ๋ ˆ์ด์–ด์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๊ฐฑ์‹ 

๋ฏธ๋ถ„์˜ ์—ฐ์‡„ ๋ฒ•์น™, Chain Rule์„ ์ด์šฉ

ํ•ฉ์„ฑ ํ•จ์ˆ˜์˜ ์—ฐ์‡„ ๊ฒฐํ•ฉ์ด ์ ์šฉ๋œ ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง

์—ฐ์‡„ ๋ฒ•์น™์˜ ์˜์˜

  • ์•„๋ฌด๋ฆฌ ๊ฐœ๋ณ„ ๋ณ€์ˆ˜๊ฐ€ ๋ณต์žกํ•˜๊ฒŒ ๊ตฌ์„ฑ๋œ ํ•จ์ˆ˜์˜ ๋ฏธ๋ถ„์ด๋ผ๋„ ํ•ด๋‹น ํ•จ์ˆ˜๊ฐ€ (๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ) ๋‚ดํฌ ํ•จ์ˆ˜์˜ ์—ฐ์†์ ์ธ ๊ฒฐํ•ฉ์œผ๋กœ ๋˜์–ด ์žˆ๋‹ค๋ฉด ์—ฐ์‡„ ๋ฒ•์น™์œผ๋กœ ์‰ฝ๊ฒŒ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๋‹ค

์˜ค์ฐจ ์—ญ์ „ํŒŒ(Backpropagation)์˜ Gradient ์ ์šฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜ - 01

Upstream Gradient

  • ๋‹ค๋ฅธ ๋ ˆ์ด์–ด์—์„œ ์ „ํ•ด์ ธ ์˜จ ๋ฏธ๋ถ„ ๊ฐ’

Local Gradient

  • ๊ฐ™์€ ๋ ˆ์ด์–ด์—์„œ ์ „ํ•ด์ ธ ์˜จ ๋ฏธ๋ถ„ ๊ฐ’

์˜ค์ฐจ ์—ญ์ „ํŒŒ(Backpropagation)์˜ Gradient ์ ์šฉ ๋ฉ”์ปค๋‹ˆ์ฆ˜ - 02

  • ์ธต์ด ์—ฌ๋Ÿฌ๊ฐœ์ด๊ณ , ํ•œ ์ธต์˜ ์œ ๋‹›์ด ์—ฌ๋Ÿฌ๊ฐœ๋ผ๋ฉด ์—ฌ๋Ÿฌ๊ฐœ์˜ ์—ญ์ „ํŒŒ ๋ฏธ๋ถ„ ๊ฐ’์„ ํ•ฉ์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค.

ํ™œ์„ฑํ™” ํ•จ์ˆ˜(Activation Function)์˜ ์ดํ•ด

ํ™œ์„ฑํ™” ํ•จ์ˆ˜

  • Sigmoid Function

    • ์ด์ง„ ๋ถ„๋ฅ˜์‹œ ๋งˆ์ง€๋ง‰ ๋ถ„๋ฅ˜ ์ถœ๋ ฅ์ธต์— ์‚ฌ์šฉ

    • ์€๋‹‰์ธต์˜ Vanishing Gradient ๋ฌธ์ œ๋กœ ๋” ์ด์ƒ ์‚ฌ์šฉ๋˜์ง€ ์•Š์Œ

  • Softmax

    • ๋ฉ€ํ‹ฐ ๋ถ„๋ฅ˜์‹œ ๋งˆ์ง€๋ง‰ ๋ถ„๋ฅ˜ ์ธจ๋ ฅ์ธต์— ์‚ฌ์šฉ

    • Score๊ฐ’์„ ํ™•๋ฅ ๊ฐ’ 0~1๋กœ ๋ณ€ํ™˜ํ•˜๋Š”๋ฐ ์ด ๋•Œ ๋ชจ๋“  ๊ฐœ๋ณ„ ์ถœ๋ ฅ๊ฐ’์˜ ํ•ฉ์ด 1์ด ๋˜๋„๋ก ๋งคํ•‘ํ•œ๋‹ค.

  • Hyperbolic Tangent

  • ReLU

    • ์€๋‹‰์ธต์— ์‚ฌ์šฉ๋จ

    • 0๋ณด๋‹ค ์ž‘์œผ๋ฉด ์ถœ๋ ฅ์€ 0

    • 0๋ณด๋‹ค ํฌ๋ฉด ์ž…๋ ฅ๊ฐ’์„ ์ถœ๋ ฅ

    • ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ๋ณ€ํ˜•์ด ์กด์žฌ

      • Leaky ReLU, ELU

Tensorflow Playground์—์„œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ํ•™์Šต ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ •๋ฆฌํ•ด๋ณด๊ธฐ

์—ฌ๊ธฐ์„œ ๋ถ„๋ฅ˜์™€ ํšŒ๊ท€๋ฅผ ํ•˜๋Š” ๋ชจ๋ธ์˜ ์€๋‹‰์ธต์„ ์กฐ์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค.

Last updated

Was this helpful?