๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
  • Tensorflow 2.X ์™€ tf.keras ์†Œ๊ฐœ
  • ์ด๋ฏธ์ง€ ๋ฐฐ์—ด์˜ ์ดํ•ด
  • Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ํ™•์ธ ๋ฐ ์‚ฌ์ „ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
  • Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ๋ชจ๋ธ ์„ค๊ณ„ ๋ฐ ํ•™์Šต ์ˆ˜ํ–‰
  • Keras Layer API ๊ฐœ์š”
  • Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ์˜ˆ์ธก ๋ฐ ์„ฑ๋Šฅ ํ‰๊ฐ€
  • Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต ์ˆ˜ํ–‰

Was this helpful?

  1. 2021 TIL
  2. APR

24 Sat

๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ

Tensorflow 2.X ์™€ tf.keras ์†Œ๊ฐœ

ํ…์„œํ”Œ๋กœ์šฐ 2.0์ด 19๋…„๋„ 1์›”์— ๋‚˜์™”์Œ

์ด ๋ฒ„์ „ ์ด์ „์—๋Š” ์ผ€๋ผ์Šค๊ฐ€ ๋‹จ๋…์œผ๋กœ ์žˆ์—ˆ๋Š”๋ฐ ๋ฒ„์ „ ์ดํ›„์—๋Š” ํ…์„œํ”Œ๋กœ์šฐ ๋‚ด๋ถ€ ํŒจํ‚ค์ง€๋กœ ํฌํ•จ๋œ๋‹ค.

๊ธฐ์กด ์ผ€๋ผ์Šค ๋ณด๋‹ค ํ…์„œํ”Œ๋กœ์šฐ ์„œ๋ธŒ ํŒจํ‚ค์ง€์ธ ์ผ€๋ผ์Šค๋ฅผ ๊ถŒ์žฅํ•œ๋‹ค

# 2.0 ์ด์ „
from keras.layers import Dense

# 2.0 ์ดํ›„
from tensorflow.keras.layers import Dense

์ด๋ฏธ์ง€ ๋ฐฐ์—ด์˜ ์ดํ•ด

Image ์ƒ‰์ƒ ๋ชจ๋ธ

  • ์ด๋ฏธ์ง€๋Š” 0๋ถ€ํ„ฐ 255๊นŒ์ง€์˜ ์ˆ˜๋กœ ์ด๋ฃจ์–ด์ง„ ํ”ฝ์…€๋กœ ํ‘œํ˜„ํ•œ๋‹ค

    • 0์€ Black, 255๋Š” White

  • Grayscale : height * width ํ˜•ํƒœ์˜ 2์ฐจ์› ๋ฐฐ์—ด

  • Color : height * width * channel ํ˜•ํƒœ์˜ 3์ฐจ์› ๋ฐฐ์—ด

๋ฐฐ์—ด ์ฐจ์›

  • ์—ฌ๋Ÿฌ ์žฅ์˜ Grayscale ์ด๋ฏธ์ง€ : 3์ฐจ์›

  • ์—ฌ๋Ÿฌ ์žฅ์˜ RGB ์ด๋ฏธ์ง€ : 4์ฐจ์›

ํ…์„œ ๋ชจ๋ธ ๊ตฌ์ถ•์‹œ ํ•ญ์ƒ 3์ฐจ์›์˜ ํ˜•ํƒœ๋กœ ๋„ฃ์–ด์•ผ ํ•œ๋‹ค.

  • ๊ธฐ๋ณธ์ ์œผ๋กœ ๋‚ฑ์žฅ์˜ ๊ธฐ์ค€์„ 3์ฐจ์›์œผ๋กœ ๋ณด๊ธฐ ๋•Œ๋ฌธ(?)

  • ๋’ค์—์„œ ๋‹ค์‹œ ๋‹ค๋ฃฐ ๊ฒƒ

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ํ™•์ธ ๋ฐ ์‚ฌ์ „ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ

import matplotlib.pyplot as plt
%matplotlib inline 

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

def show_images(images, labels, ncols=8):
    figure, axs = plt.subplots(figsize=(22, 6), nrows=1, ncols=ncols)
    for i in range(ncols):
        axs[i].imshow(images[i], cmap='gray')
        axs[i].set_title(class_names[labels[i]])
        
show_images(train_images[:8], train_labels[:8], ncols=8)
show_images(train_images[8:16], train_labels[8:16], ncols=8)
  • plt.subplots ์€ ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. axs๋Š” ๊ฐ n๋ฒˆ์งธ ๋ง‰๋Œ€๊ทธ๋ž˜ํ”„

์„ฑ๋Šฅ์ด ์ค€์ˆ˜ํ•˜๊ฒŒ ๋‚˜์˜จ ์ด์œ ๋Š” ๋ฌผ์ฒด๊ฐ€ ์ด๋ฏธ์ง€ ์ • ์ค‘์•™์— ์œ„์น˜ํ•˜๊ธฐ ๋•Œ๋ฌธ.

  • 1์ฐจ์›์œผ๋กœ ์ž…๋ ฅ์„ ๋ฐ›๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์ด ์•ˆ์ข‹๊ฒŒ ๋‚˜์™€์•ผ ์ •์ƒ!

  • 2์ฐจ์›์œผ๋กœ ์ž…๋ ฅ๋ฐ›์ง€ ์•Š์•˜์œผ๋ฏ€๋กœ ์ด๋ฏธ์ง€์˜ ์ง€์—ญ์  ํŠน์„ฑ์„ ์ „ํ˜€ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ž…

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ๋ชจ๋ธ ์„ค๊ณ„ ๋ฐ ํ•™์Šต ์ˆ˜ํ–‰

from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.models import Sequential

model = Sequential([
    Flatten(input_shape=(INPUT_SIZE, INPUT_SIZE)),
    Dense(100, activation='relu'),
    Dense(30, activation='relu'),
    Dense(10, activation='softmax')
])

model.summary()
  • Dense๋Š” ๋ ˆ์ด์–ด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ํ•จ์ˆ˜

  • Dense๋Š” 1์ฐจ์› ๋ฐ์ดํ„ฐ๋งŒ ์ž…๋ ฅ ๋ฐ›์„ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ Flatten์œผ๋กœ 1์ฐจ์› ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค

Keras Layer API ๊ฐœ์š”

์ผ€๋ผ์Šค๊ฐ€ ์ข‹์€ ์ด์œ ๋Š” ๋ ˆ์ด์–ด ๊ตฌ์„ฑ์ด ํŽธํ•˜๊ธฐ ๋•Œ๋ฌธ

  • Dense layer(activate=None) + Activation layer(sigmoid)= Dense layer(activate=sigmoid)

  • Core layers, Pooling layes, Convolution layes, Activation layers ๋“ฑ์ด ๋‹ค์–‘ํ•˜๊ฒŒ ์กด์žฌํ•œ๋‹ค.

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ์˜ˆ์ธก ๋ฐ ์„ฑ๋Šฅ ํ‰๊ฐ€

history = model.fit(x=train_images, y=train_oh_labels, batch_size=32, epochs=20, verbose=1)
  • ๋ชจ๋ธ์—์„œ ์ž…๋ ฅ์„ 3์ฐจ์›(2์ฐจ์› ๊ทธ๋ ˆ์ด์Šค์ผ€์ผ ์—ฌ๋Ÿฌ์žฅ)์œผ๋กœ ๋„ฃ์—ˆ์ง€๋งŒ ์‹ค์ œ๋กœ ๋ชจ๋ธ์€ 2์ฐจ์›์œผ๋กœ ์ž…๋ ฅ์„ ๊ฐ„์ฃผํ•˜๊ฒŒ ๋œ๋‹ค.

  • ๋”ฐ๋ผ์„œ, ์‚ฌ์ง„์„ ๋‹จ์ผ๋กœ ์ž…๋ ฅํ•  ๋•Œ๋Š” ์ฐจ์› ๋ณ€ํ™˜์„ ํ•ด์ค˜์•ผ ํ•œ๋‹ค.

    • ๋งŒ์•ฝ (10000, 28, 28) ์ด ์—ˆ๋‹ค๋ฉด ํ•œ์žฅ์„ ๋„ฃ์„ ๋•Œ (28, 28)๋กœ ์ž…๋ ฅ์ด ๋˜๋ฏ€๋กœ ์—๋Ÿฌ๊ฐ€ ๋‚œ๋‹ค.

    • (1, 28, 28)๋กœ ๋ฐ”๊ฟ”์„œ ์ž…๋ ฅ๊ฐ’์— ๋„ฃ์–ด์ค˜์•ผ ํ•œ๋‹ค.

  • ์ด๊ฒƒ์„ ๋‹ด๋‹นํ•˜๋Š” ํ•จ์ˆ˜๊ฐ€ np.expand_dims ์ด๋‹ค.

    • np.expand_dims(test-images[0], axis=0).shape

    • (1, 28, 28)

  • ์ด ๋•Œ ํ•„์š”ํ•˜๋‹ค๋ฉด ์ถœ๋ ฅ๊ฐ’์˜ ๋ชจ์–‘๋„ ๋ฐ”๊ฟ”์ค˜์•ผ ํ•œ๋‹ค. ์ถœ๋ ฅ์ด (1, 28, 28)๋กœ ๋‚˜์˜ฌ ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ

๋ชจ๋ธ ์„ฑ๋Šฅ ๊ฒ€์ฆ

  • model.evaluate ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.

    • ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋ฅผ ํ•œ๋‹ค.

Dense Layer๋กœ Fashion MNIST ์˜ˆ์ธก ๋ชจ๋ธ ๊ตฌํ˜„ํ•˜๊ธฐ - ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต ์ˆ˜ํ–‰

ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ๊ณผ์ ํ•ฉ ๋˜์—ˆ๋Š”์ง€๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ํ‰๊ฐ€ํ•ด๋ด์•ผ ํ•œ๋‹ค. ์ด ๋•Œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•œ๋‹ค.

  • ์–ด์ฐจํ”ผ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์—๋Ÿฌ๋Š” ์ค„์–ด๋“ค ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—

๋˜ํ•œ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ์„ฑ๋Šฅ์ด ์ข‹์•„ ์ง€์ง€ ์•Š์„ ๋•Œ Callback์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•™์Šต๋ฅ ์„ ๋ณด์ • ์ž‘์—…ํ•  ์ˆ˜ ์žˆ๋‹ค.

์ผ๋ฐ˜์ ์œผ๋กœ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋Š” ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์—์„œ ์ชผ๊ฐœ์„œ ์‚ฌ์šฉํ•œ๋‹ค.

  • ์ด๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ํ•จ์ˆ˜๋Š” ์‚ฌ์ดํ‚ท๋Ÿฐ์—์„œ ์ง€์›ํ•œ๋‹ค.

from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical

# ๊ธฐ์กด ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์‹œ ํ•™์Šต๊ณผ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ๋ถ„๋ฆฌ
tr_images, val_images, tr_labels, val_labels = train_test_split(train_images, train_labels, test_size=0.15, random_state=2021)
print('train๊ณผ validation shape:', tr_images.shape, tr_labels.shape, val_images.shape, val_labels.shape)
  • random_state=2021 : ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ„๋ฆฌ๋  ๋•Œ ๋งค๋ฒˆ ๋‹ค๋ฅด๊ฒŒ ๋ถ„๋ฆฌ๋˜๋Š” ๊ฒƒ์„ ๋ง‰๊ธฐ ์œ„ํ•ด seed๋ฅผ ์ •ํ•œ๋‹ค.

history = model.fit(x=tr_images, y=tr_oh_labels, batch_size=128, validation_data=(val_images, val_oh_labels), 
                    epochs=20, verbose=1)
  • ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ™์€ ๊ฒฝ์šฐ๋Š” ๋ฐ์ดํ„ฐ์™€ ๋ผ๋ฒจ์ด ๋ถ„๋ฆฌ๋˜์„œ ์ž…๋ ฅ๋˜์ง€๋งŒ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ ๊ฐ™์€ ๊ฒฝ์šฐ๋Š” ํŠœํ”Œ๋กœ ์ž…๋ ฅํ•œ๋‹ค.

  • ๋˜ํ•œ, model.fit ์ž์ฒด์—์„œ๋„ ๊ฒ€์ฆ๋ฐ์ดํ„ฐ ๋ถ„๋ฆฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค.

    • ๋ฏธ๋ฆฌ ๋งŒ๋“ค์–ด์„œ validation_date์— ๋„ฃ์–ด๋„ ๋˜๊ณ 

    • ๋งŒ๋“ค์ง€ ์•Š๊ณ  validation_split์„ ์„ค์ •ํ•ด๋„ ๋œ๋‹ค.

์ผ๋ฐ˜์ ์œผ๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ์ค€์œผ๋กœ GD๋ฅผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณดํ†ต ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ •ํ™•๋„๊ฐ€ ๋” ๋†’์€ ํŽธ์ด๋‹ค. ๋ฐ”๋žŒ์งํ•œ ๊ฒƒ์€ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์ •ํ™•๋„๋ณด๋‹ค ๊ต์ฐจ ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ์ •ํ™•๋„๊ฐ€ ๋” ๋†’๊ฑฐ๋‚˜ ํ˜น์€ ๋™์ผํ•œ ๊ฒฝ์šฐ์ด๋‹ค.

import matplotlib.pyplot as plt
%matplotlib inline

plt.plot(history.history['accuracy'], label='train')
plt.plot(history.history['val_accuracy'], label='valid')
plt.legend()
  • ๋‹ค์Œ๊ณผ ๊ฐ™์ด plt.plot ๊ณผ plt.legend() ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

  • ํ•™์Šต์ด ์ง„ํ–‰๋ ์ˆ˜๋ก ๊ฐ„๊ฒฉ์ด ๋ฉ€์–ด์ง€๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

Previous25 SunNext23 Fri

Last updated 4 years ago

Was this helpful?