๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [AI ์Šค์ฟจ 1๊ธฐ] 9์ฃผ์ฐจ DAY 3
  • Big Data : SparkSQL์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„
  • Big Data : SparkSQL์ด๋ž€?

Was this helpful?

  1. 2021 TIL
  2. FEB

3 Wed

TIL

Previous4 ThuNext2 Tue

Last updated 4 years ago

Was this helpful?

[AI ์Šค์ฟจ 1๊ธฐ] 9์ฃผ์ฐจ DAY 3

Big Data : SparkSQL์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„

๋ฐฐ์›€์˜ ์ „ํ˜•์ ์ธ ํŒจํ„ด

  • ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ฒ„ํ‹ฐ๋Š” ํž˜ => ์ฆ๊ธธ์ค„ ์•Œ๊ธฐ

  • ๋ง‰ํ˜”์„ ๋•Œ ๋‚ด๊ฐ€ ๋ญ˜ ๋ชจ๋ฅด๋Š”์ง€ ์ƒ๊ฐํ•ด๋ด์•ผ ํ•จ

  • ์ž˜ํ•˜๋Š” ์‚ฌ๋žŒ๋ณด๊ณ  ๊ธฐ์ฃฝ์ง€ ์•Š๊ธฐ => ๊ทธ๋“ค์ด ๋จผ์ € ์‹œ์ž‘ํ–ˆ๋‹ค๊ณ  ์ƒ๊ฐํ•˜๊ณ  ๋˜ ์ด๊ฒƒ์ด ์‚ฌ์‹ค์ด๋‹ค

์ƒˆ๋กœ์šด ๊ฒƒ์„ ์ฒ˜์Œ ๋ฐฐ์šธ ๋•Œ์˜ ์ข‹์€ ์ž์„ธ

  • ์ž์‹ ์ด ์•„๋Š” ๊ฒƒ๊ณผ ๋ชจ๋ฅด๋Š” ๊ฒƒ์„ ๋ถ„๋ช…ํžˆ ์ดํ•ด

    • ๋ฉ์ฒญํ•œ ์งˆ๋ฌธ์€ ์—†์Œ

  • ๋งˆ์Œ์„ ํŽธํ•˜๊ฒŒ ๋จน๊ธฐ

    • ๋‚ด๊ฐ€ ์ดํ•ดํ•˜๊ธฐ ํž˜๋“ค๋ฉด ๋‚จ๋“ค๋„ ํž˜๋“ฆ

    • ๋‚˜๋ณด๋‹ค ๋” ์ž˜ํ•˜๋Š” ์‚ฌ๋žŒ์€ ๋˜‘๋˜‘ํ•˜๊ธฐ ๋ณด๋‹ค๋Š” ๋” ๋…ธ๋ ฅํ–ˆ๊ธฐ ๋•Œ๋ฌธ

  • ๋ฐฐ์›€์˜ ๋ฐœ์ „์€ Tipping point๋ฅผ ๊ฑฐ์น˜๋ฉด์„œ ํญ๋ฐœํ•˜๋Š” ํ˜•ํƒœ

    • ๋ฐœ์ „์ด ๋”๋”˜ ๊ธฐ๊ฐ„์„ ์ฆ๊ฒจ์•ผ ์ด๋Ÿฌํ•œ ์ •์ฒด๊ธฐ ๋’ค์— ํญ๋ฐœ์ ์ธ ๋ฐœ์ „์˜ ์‹œ๊ธฐ๊ฐ€ ๋‹ค๊ฐ€์˜จ๋‹ค

๋น…๋ฐ์ดํ„ฐ์—์„œ ์ค‘์š”ํ•œ SQL

  • ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃฐ๊ฑฐ๋ฉด SQL์€ ๋Š์ž„์—†์ด ์ค‘์š”

  • ๋ชจ๋“  ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์›จ์–ดํ•˜์šฐ์Šค๋Š” SQL ๊ธฐ๋ฐ˜

  • Spark๋„ ์˜ˆ์™ธ๋Š” ์•„๋‹˜

    • SparkSQL

  • ๋ฐ์ดํ„ฐ ๋ถ„์•ผ์—์„œ ์ผํ•˜๊ณ ์ž ํ•˜๋ฉด ๋ฐ˜๋“œ์‹œ ์ตํ˜€์•ผํ•  ๊ธฐ๋ณธ ๊ธฐ์ˆ 

๊ด€๊ณ„ํ˜• ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค

  • ๋Œ€ํ‘œ์ ์ธ ๊ด€๊ณ„ํ˜• ๋ฐ์ดํ„ฐ ๋ฒ ์ด์Šค

    • MySQL, Postgres, Oracle

    • Redshift, Snowflake

  • ๊ด€๊ณ„ํ˜• ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋Š” 2๋‹จ๊ณ„๋กœ ๊ตฌ์„ฑ๋จ

    • ๊ฐ€์žฅ ๋ฐ‘๋‹จ์—๋Š” ํ…Œ์ด๋ธ”๋“ค์ด ์กด์žฌ. ํ…Œ์ด๋ธ”์€ ์—‘์…€์˜ ์‹œํŠธ์— ํ•ด๋‹น

    • ํ…Œ์ด๋ธ”๋“ค์€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ผ๋Š” ํด๋” ๋ฐ‘์œผ๋กœ ๊ตฌ์„ฑ

  • ํ…Œ์ด๋ธ”์˜ ๊ตฌ์กฐ. ์Šคํ‚ค๋งˆ๋ผ๊ณ  ๋ถ€๋ฅด๊ธฐ๋„ ํ•œ๋‹ค.

    • ํ…Œ์ด๋ธ”์€ ๋ ˆ์ฝ”๋“œ๋“ค๋กœ ๊ตฌ์„ฑ

    • ๋ ˆ์ฝ”๋“œ๋Š” ํ•˜๋‚˜ ์ด์ƒ์˜ ํ•„๋“œ๋กœ ๊ตฌ์„ฑ

    • ํ•„๋“œ๋Š” ์ด๋ฆ„๊ณผ ํƒ€์ž…์œผ๋กœ ๊ตฌ์„ฑ๋จ

  • ์˜ˆ์ œ 1 - ์›น์„œ๋น„์Šค ์‚ฌ์šฉ์ž/์„ธ์…˜ ์ •๋ณด

    • ์‚ฌ์šฉ์ž ID

      • ๋ณดํ†ต ์›น์„œ๋น„์Šค์—์„œ๋Š” ๋“ฑ๋ก๋œ ์‚ฌ์šฉ์ž๋งˆ๋‹ค ์œ ์ผํ•œ ID๋ฅผ ๋ถ€์—ฌํ•œ๋‹ค

    • ์„ธ์…˜ ID

      • ์‚ฌ์šฉ์ž๊ฐ€ ์™ธ๋ถ€ ๋งํฌ(๋ณดํ†ต ๊ด‘๊ณ )๋ฅผ ํƒ€๊ณ  ์˜ค๊ฑฐ๋‚˜ ์ง์ ‘ ๋ฐฉ๋ฌธํ•ด์„œ ์˜ฌ ๊ฒฝ์šฐ ์„ธ์…˜์„ ์ƒ์„ฑ

      • ์ฆ‰ ํ•˜๋‚˜์˜ ์‚ฌ์šฉ์ž ID๋Š” ์—ฌ๋Ÿฌ ์„ธ์…˜ ID๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Œ

      • ๋ณดํ†ต ์„ธ์…˜์˜ ๊ฒฝ์šฐ ์„ธ์…˜์„ ๋งŒ๋“ค์–ด๋‚ธ ์†Œ์Šค๋ฅผ ์ฑ„๋„์ด๋ž€ ์ด๋ฆ„์œผ๋กœ ๊ธฐ๋ก

        • ๋งˆ์ผ€ํŒ… ๊ด€๋ จ ๊ธฐ์—ฌ๋„ ๋ถ„์„์„ ์œ„ํ•จ

      • ์„ธ์…˜ ์ƒ์„ฑ ์‹œ๊ฐ„๋„ ๊ธฐ๋ก

    • ์ด ์ •๋ณด๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์ง€ํ‘œ ์„ค์ •์ด ๊ฐ€๋Šฅ

      • ๋งˆ์ผ€๋”ฉ ๊ด€๋ จ

      • ์‚ฌ์šฉ์ž ํŠธ๋ž˜ํ”ฝ ๊ด€๋ จ

    • EX)

      • ์‚ฌ์šฉ์ž ID 100๋ฒˆ : ์ด 3๊ฐœ์˜ ์„ธ์…˜(ํŒŒ๋ž€ ๋ฐฐ๊ฒฝ)์„ ๊ฐ–๋Š” ์˜ˆ์ œ

      • ์„ธ์…˜ 1 : ๊ตฌ๊ธ€ ํ‚ค์›Œ๋“œ ๊ด‘๊ณ ๋กœ ์‹œ์ž‘ํ•œ ์„ธ์…˜

      • ์„ธ์…˜ 2 : ํŽ˜์ด์Šค๋ถ ๊ด‘๊ณ ๋ฅผ ํ†ตํ•ด ์ƒ๊ธด ์„ธ์…˜ => ๋ฆฌํƒ€๊ฒŒํŒ… ๊ด‘๊ณ 

      • ์„ธ์…˜ 3 : ๋„ค์ด๋ฒ„ ๊ด‘๊ณ ๋ฅผ ํ†ตํ•ด ์ƒ๊ธด ์„ธ์…˜

SQL ์†Œ๊ฐœ

  • SQL : Structured Query Language

  • ๋‘ ์ข…๋ฅ˜์˜ ์–ธ์–ด๋กœ ๊ตฌ์„ฑ๋จ

    • DDL (Data Definition Language) : ํ…Œ์ด๋ธ”์˜ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•˜๋Š” ์–ธ์–ด

    • DML (Data Manipulation Language) : ํ…Œ์ด๋ธ”์— ๋ ˆ์ฝ”๋“œ๋ฅผ ์ถ”๊ฐ€,์‚ญ์ œ,๊ฐฑ์‹  ํ•  ๋•Œ ์‚ฌ์šฉํ•˜๋Š” ์–ธ์–ด

  • DDL

    • CREATE TABLE

    • DROP TABLE

    • ALTER TABLE

  • DML

    • SELECT ํ•„๋“œ ์ด๋ฆ„

    • FROM ํ…Œ์ด๋ธ” ์ด๋ฆ„

    • WHERE ์„ ํƒ์กฐ๊ฑด

    • ORDER BY ์ •๋ ฌ

    • LIMIT N (N๊ฐœ๋งŒ)

    • EX

      • SELECT * FROM raw LIMIT 10;

        • ์ฒ˜์Œ ๋ ˆ์ฝ”๋“œ 10๊ฐœ์— ๋Œ€ํ•ด์„œ ๋ชจ๋“  ํ•„๋“œ๋ฅผ ๋ฆฌํ„ด

      • SELECT COUNT(1) FROM raw

        • ์ด ํ…Œ์ด๋ธ”์— ์žˆ๋Š” ๋ชจ๋“  ๋ ˆ์ฝ”๋“œ์˜ ์ˆ˜๋ฅผ ๋ฆฌํ„ด

      • SELECT COUNT(1) FROM raw WHERE channel = 'Facebook'

        • channel์ด Facebook์ธ ๋ชจ๋“  ๋ ˆ์ฝ”๋“œ์˜ ์ˆ˜๋ฅผ ๋ฆฌํ„ด

Big Data : SparkSQL์ด๋ž€?

SparkSQL

  • ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ Spark ๋ชจ๋“ˆ

  • ๋Œ€ํ™”ํ˜• Spark ์…ธ์ด ์ œ๊ณต๋จ

  • ํ•˜๋‘ก ์ƒ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž‘์„ฑ๋œ Hive ์ฟผ๋ฆฌ์˜ ๊ฒฝ์šฐ ๋ณ€๊ฒฝ์—†์ด ์ตœ๋Œ€

  • ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์„ SQL๋กœ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ

SparkSQL ์‚ฌ์šฉ๋ฒ•

  • ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์ƒ์„ฑ

  • Redshift ์—ฐ๊ฒฐ

    • SparkSession์„ ๋งŒ๋“ค ๋•Œ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ๋งž๋Š” JDBC jar๋ฅผ ์ง€์ •

    • SparkSession์˜ read ํ•จ์ˆ˜๋ฅผ ํ˜ธ์ถœ

      • ๋กœ๊ทธ์ธ ๊ด€๋ จ ์ •๋ณด์™€ ์ฝ์–ด์˜ค๊ณ ์ž ํ•˜๋Š” ํ…Œ์ด๋ธ” ๋˜๋Š” SQL์„ ์ง€์ •

      • ๊ฒฐ๊ณผ๊ฐ€ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์œผ๋กœ ๋ฆฌํ„ด๋จ

    • ์•ž์„œ ๋ฆฌํ„ด๋œ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์— ํ…Œ์ด๋ธ” ์ด๋ฆ„ ์ง€์ •

    • SparkSession์˜ sql ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉ