๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [AI ์Šค์ฟจ 1๊ธฐ] 9์ฃผ์ฐจ DAY 4
  • Big Data : Spark MLib ์†Œ๊ฐœ
  • Big Data : Spark MLib ํ”ผ์ณ ๋ณ€ํ™˜
  • [ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜] PART 01 ํŒŒ์ดํ† ์น˜ ๊ธฐ์ดˆ
  • 01 ํŒŒ์ด์ฌ ๋˜๋Š” ์•„๋‚˜์ฝ˜ํƒ€ ์„ค์น˜ํ•˜๊ธฐ
  • 02 CUDA, CuDNN ์„ค์น˜ํ•˜๊ธฐ
  • 03 ํŒŒ์ดํ† ์น˜ ์„ค์น˜ํ•˜๊ธฐ
  • 04 ๋ฐ˜๋“œ์‹œ ์•Œ์•„์•ผ ํ•˜๋Š” ํŒŒ์ดํ† ์น˜ ์Šคํ‚ฌ

Was this helpful?

  1. 2021 TIL
  2. FEB

4 Thu

[AI ์Šค์ฟจ 1๊ธฐ] 9์ฃผ์ฐจ DAY 4

Big Data : Spark MLib ์†Œ๊ฐœ

Spark MLib

  • ๋จธ์‹ ๋Ÿฌ๋‹ ๊ด€๋ จ ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์œ ํ‹ธ๋ฆฌํ‹ฐ๋กœ ๊ตฌ์„ฑ๋œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

    • Classfication, Regression, Clustering, Collaborative Filtering, Dimensionality, Reduction

    • ์•„์ง ๋”ฅ๋Ÿฌ๋‹ ์ง€์›์€ ๋ฏธ์•ฝ

  • RDD ๊ธฐ๋ฐ˜๊ณผ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ๊ธฐ๋ฐ˜์˜ ๋‘ ๋ฒ„์ „์ด ์กด์žฌ

    • spark.mllib vs spark.ml

      • mllib๊ฐ€ RDD ๊ธฐ๋ฐ˜์ด๊ณ  ml์€ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ๊ธฐ๋ฐ˜

      • mllib๋Š” ์ด์ „ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋กœ ๋” ์ด์ƒ ์—…๋ฐ์ดํŠธ๊ฐ€ ์•ˆ๋จ

      • ๋”ฐ๋ผ์„œ ํ•ญ์ƒ spark.ml์„ ์‚ฌ์šฉํ•  ๊ฒƒ!

  • ์žฅ์ 

    • ์›์Šคํ†ฑ ML ํ”„๋ ˆ์ž„์›Œํฌ

      • ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„๊ณผ SparkSQL๋“ฑ์„ ์ด์šฉํ•ด ์ „์ฒ˜๋ฆฌ

      • Spark MLlib๋ฅผ ์ด์šฉํ•ด ๋ชจ๋ธ ๋นŒ๋”ฉ

      • ML Pipeline์„ ํ†ตํ•ด ๋ชจ๋ธ ๋นŒ๋”ฉ ์ž๋™ํ™”

      • ML flow๋กœ ๋ชจ๋ธ ๊ด€๋ฆฌํ•˜๊ณ  ์„œ๋น™

    • ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ๋„ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ

    • ๋ฐ์ดํ„ฐ๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ๋Š” ๊ตณ์ด ์‚ฌ์šฉํ•  ํ•„์š”๋Š” ์—†์Œ

MLflow

  • ๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณผ ํ…Œ์ŠคํŠธ์™€ ๊ด€๋ฆฌ์™€ ์„œ๋น™๊นŒ์ง€ ์ œ๊ณตํ•ด์ฃผ๋Š” ์—”๋“œํˆฌ์—”๋“œ ํ”„๋ ˆ์ž„ ์›Œํฌ

  • ํŒŒ์ด์ฌ, ์ž๋ฐ”, R, API๋ฅผ ์ง€์›

  • ํŠธ๋ž˜ํ‚น, ๋ชจ๋ธ, ํ”„๋กœ์ ํŠธ๋ฅผ ์ง€์›

Spark MLlib ์ œ๊ณต ์•Œ๊ณ ๋ฆฌ์ฆ˜

Spark MLlib ๊ธฐ๋ฐ˜ ๋ชจ๋ธ ๋นŒ๋”ฉ์˜ ๊ธฐ๋ณธ ๊ตฌ์กฐ

  • ๋ชจ๋ธ ๋นŒ๋”ฉ

    • ํŠธ๋ ˆ์ด๋‹์…‹ ์ „์ฒ˜๋ฆฌ

    • ๋ชจ๋ธ ๋นŒ๋”ฉ

    • ๋ชจ๋ธ ๊ฒ€์ฆ

  • Scikit-Learn๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ์žฅ์ 

    • ์ฐจ์ด์ ์€ ๋ฐ์ดํ„ฐ์˜ ํฌ๊ธฐ

    • ํŠธ๋ ˆ์ด๋‹์…‹์˜ ํฌ๊ธฐ๊ฐ€ ํฌ๋ฉด ์ „์ฒ˜๋ฆฌ์™€ ๋ชจ๋ธ ๋นŒ๋”ฉ์— ์žˆ์–ด Spark๊ฐ€ ํฐ ์žฅ์ ์„ ๊ฐ€์ง

    • Spark๋Š” ML ํŒŒ์ดํ”„๋ผ์ธ์„ ํ†ตํ•ด ๋ชจ๋ธ ๊ฐœ๋ฐœ์˜ ๋ฐ˜๋ณต์„ ์‰ฝ๊ฒŒ ํ•ด์คŒ

Big Data : Spark MLib ํ”ผ์ณ ๋ณ€ํ™˜

ํ”ผ์ณ ์ถ”์ถœ๊ณผ ๋ณ€ํ™˜

  • ํ”ผ์ฒ˜ ๊ฐ’๋“ค์„ ๋ชจ๋ธ ํ›ˆ๋ จ์— ์ ํ•ฉํ•œ ํ˜•ํƒœ๋กœ ๋ฐ”๊พธ๋Š” ๊ฒƒ์„ ์ง€์นญ

  • ํฌ๊ฒŒ Feature Extractor์™€ Feature Transformer๊ฐ€ ์กด์žฌ

  • Feature Transformer

    • ํ”ผ์ฒ˜ ๊ฐ’๋“ค์€ ์ˆซ์ž ํ•„๋“œ(์—ฌ์•ผํ•จ)

    • ์ˆซ์ž ํ•„๋“œ ๊ฐ’์˜ ๋ฒ”์œ„ ํ‘œ์ค€ํ™”

    • ๋น„์–ด์žˆ๋Š” ํ•„๋“œ๋“ค์˜ ๊ฐ’์„ ์–ด๋–ป๊ฒŒ ์ฑ„์šธ์ง€ ๊ฒฐ์ •

  • Feature Extractor

    • ๊ธฐ์กด ํ”ผ์ณ์—์„œ ์ƒˆ๋กœ์šด ํ”ผ์ณ๋ฅผ ์ถ”์ถœ

    • ex) TF-IDF, Word2Vec

ํ”ผ์ณ ๋ณ€ํ™˜ String Indexer

ํ”ผ์ณ ๋ณ€ํ™˜ Scaler : ์ˆซ์ž ํ•„๋“œ๊ฐ’์˜ ๋ฒ”์œ„ ํ‘œ์ค€ํ™”

  • ์ˆซ์ž ํ•„๋“œ ๊ฐ’์˜ ๋ฒ”์œ„๋ฅผ ํŠน์ • ๋ฒ”์œ„๋กœ ๋ณ€ํ™˜

  • ํ”ผ์ณ ์Šค์ผ€์ผ๋ง ํ˜น์€ ์ •๊ทœํ™”๋ผ๊ณ  ๋ถ€๋ฆ„

ํ”ผ์ณ ๋ณ€ํ™˜ Imputer : ๊ฐ’์ด ์—†๋Š” ํ•„๋“œ ์ฑ„์šฐ๊ธฐ

  • ๊ฐ’์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š” ๋ ˆ์ฝ”๋“œ๋“ค์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š” ํ•„๋“œ๋“ค์˜ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’์„ ์ •ํ•ด์„œ ์ฑ„์šฐ๋Š” ๊ฒƒ

๋ชจ๋ธ ๋นŒ๋”ฉ๊ณผ ๊ด€๋ จ๋œ ํ”ํ•œ ๋ฌธ์ œ๋“ค

  1. ํŠธ๋ ˆ์ด๋‹ ์…‹์˜ ๊ด€๋ฆฌ๊ฐ€ ์•ˆ๋จ

  2. ๋ชจ๋ธ ํ›ˆ๋ จ ๋ฐฉ๋ฒ•์ด ๊ธฐ๋ก์ด ์•ˆ ๋จ

  3. ๋ชจ๋ธ ํ›ˆ๋ จ์— ๋งŽ์€ ์‹œ๊ฐ„ ์†Œ์š”

ML Pipeline์˜ ๋“ฑ์žฅ

  • ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๋ฌธ์ œ๋“ค ์ค‘ 2, 3๋ฒˆ์„ ํ•ด๊ฒฐ

  • ์ž๋™ํ™”๋ฅผ ํ†ตํ•ด ์—๋Ÿฌ ์†Œ์ง€๋ฅผ ์ค„์ด๊ณ  ๋ฐ˜๋ณต์„ ๋น ๋ฅด๊ฒŒ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์คŒ

Spark MLlib ๊ด€๋ จ ๊ฐœ๋… ์ •๋ฆฌ

  • ML ํŒŒ์ดํ”„๋ผ์ธ์ด๋ž€?

    • ๋ฐ์ดํ„ฐ ๊ณผํ•™์ž๊ฐ€ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ฐœ๋ฐœ๊ณผ ํ…Œ์ŠคํŠธ๋ฅผ ์‰ฝ๊ฒŒ ํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ (๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ๊ธฐ๋ฐ˜)

    • ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ด€๊ณ„์—†์ด ์ผ๊ด€๋œ ํ˜•ํƒœ์˜ API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ๋ฆฌ์ด ๊ฐ€๋Šฅ

    • ML ๋ชจ๋ธ๊ฐœ๋ฐœ๊ณผ ํ…Œ์ŠคํŠธ๋ฅผ ๋ฐ˜๋ณต๊ฐ€๋Šฅํ•ด์คŒ

  • 4๊ฐœ์˜ ์š”์†Œ๋กœ ๊ตฌ์„ฑ

    • DataFrame

    • Transformer

    • Estimator

    • Parameter

  • DataFrame

    • ML ํŒŒ์ดํ”„๋ผ์ธ์—์„œ๋Š” ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์ด ๊ธฐ๋ณธ ๋ฐ์ดํ„ฐ ํฌ๋งท

    • ๊ธฐ๋ณธ์ ์œผ๋กœ CSV, JSON, Parguet, JDBC๋ฅผ ์ง€์›

    • ๋‹ค์Œ 2๊ฐ€์ง€์˜ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์†Œ์Šค๋ฅผ ์ง€์›

      • ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์†Œ์Šค

      • LIBSVM ๋ฐ์ดํ„ฐ์†Œ์Šค

  • Transformer

    • ์ž…๋ ฅ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์œผ๋กœ ๋ณ€ํ™˜

    • 2์ข…๋ฅ˜์˜ Transformer๊ฐ€ ์กด์žฌํ•˜๋ฉฐ transform์ด ๋ฉ”์ธ ํ•จ์ˆ˜

    • Feature Transformer

      • ์ž…๋ ฅ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์˜ ์ปฌ๋Ÿผ์œผ๋กœ๋ถ€ํ„ฐ ์ƒˆ๋กœ์šด ์ปฌ๋Ÿผ์„ ๋งŒ๋“ค์–ด๋‚ด ์ด๋ฅผ ์ถ”๊ฐ€ํ•œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ์ถœ๋ ฅ์œผ๋กœ ๋‚ด์คŒ. ๋ณดํ†ต ํ”ผ์ณ ์—”์ง€๋‹ˆ์–ด๋ง์„ ํ•˜๋Š”๋ฐ ์‚ฌ์šฉ

    • Learning Model

      • ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์— ํ•ด๋‹น

  • Estimator

    • ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ํ•ด๋‹น. fit์ด ๋ฉ”์ธ ํ•จ์ˆ˜

      • ํŠธ๋ ˆ์ด๋‹์…‹ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„์„œ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด๋ƒ„

      • ์˜ˆ๋ฅผ ๋“ค์–ด LogisticRegression์€ Estimator์ด๊ณ  LogistricRegression.fit()์„ ํ˜ธ์ถœํ•˜๋ฉด ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด๋ƒ„

    • ML ํŒŒ์ดํ”„๋ผ์ธ๋„ Estimator

    • Estimator๋Š” ์ €์žฅ๊ณผ ์ฝ๊ธฐ ํ•จ์ˆ˜ ์ œ๊ณต

  • Parameter

    • Transformer์™€ Estimator์˜ ๊ณตํ†ต API๋กœ ๋‹ค์–‘ํ•œ ์ธ์ž๋ฅผ ์ ์šฉํ•ด์คŒ

    • ๋‘ ์ข…๋ฅ˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์กด์žฌ

      • Param : ํ•˜๋‚˜์˜ ์ด๋ฆ„๊ณผ ๊ฐ’

      • ParamMap : Param ๋ฆฌ์ŠคํŠธ

    • ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์˜ˆ

      • ํ›ˆ๋ จ ๋ฐ˜๋ณต์ˆ˜ ์ง€์ •์„ ์œ„ํ•ด setMaxIter()๋ฅผ ์‚ฌ์šฉ

      • ParamMap(Ir.maxIter -> 10)

    • ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” fit ํ˜น์€ transform์— ์ธ์ž๋กœ ์ง€์ • ๊ฐ€๋Šฅ

  • ML Pipeline

    • ํ•˜๋‚˜ ์ด์ƒ์˜ ํŠธ๋žœ์Šคํฌ๋จธ์™€ ์—์Šคํ‹ฐ๋ฉ”์ดํ„ฐ๊ฐ€ ์—ฐ๊ฒฐ๋œ ๋ชจ๋ธ๋ง ์›ํ”Œ๋กœ์šฐ

      • ์ž…๋ ฅ์€ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„

      • ์ถœ๋ ฅ์€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ

    • ML Pipeline ๊ทธ ์ž์ฒด๋„ Estimator

[ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜] PART 01 ํŒŒ์ดํ† ์น˜ ๊ธฐ์ดˆ

01 ํŒŒ์ด์ฌ ๋˜๋Š” ์•„๋‚˜์ฝ˜ํƒ€ ์„ค์น˜ํ•˜๊ธฐ

ํŒŒ์ด์ฌ VS ์•„๋‚˜์ฝ˜๋‹ค

  • ์ปดํ“จํ„ฐ ๊ณตํ•™์„ ์ „๊ณตํ–ˆ๊ฑฐ๋‚˜ ์†Œํ”„ํŠธ์›จ์–ด ํˆด์„ ๋Šฅ์ˆ™ํ•˜๊ฒŒ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ์‚ฌ์šฉ์ž๋Š” ํŒŒ์ด์ฌ ์„ค์น˜๋ฅผ ๊ถŒ์žฅ

  • ์†Œํ”„ํŠธ์›จ์–ด ํˆด์„ ๋‹ค๋ฃจ๋Š” ๋ฐ ๋ฏธ์ˆ™ํ•œ ์‚ฌ์šฉ์ž๋Š” ์•„๋‚˜์ฝ˜๋‹ค ์„ค์น˜๋ฅผ ๊ถŒ์žฅ. ๋ฐ์ดํ„ฐ ๋ถ„์„์— ํ•„์š”ํ•œ ๋ชจ๋“ˆ์ด ์ž๋™์œผ๋กœ ์„ค์น˜๋˜๊ธฐ ๋•Œ๋ฌธ

02 CUDA, CuDNN ์„ค์น˜ํ•˜๊ธฐ

G-FLOPs

  • GPU FLoating Operations Per Second์˜ ์•ฝ์ž

  • ์ดˆ๋‹น ๋ถ€๋™์†Œ์ˆ˜์  ์—ฐ์‚ฐ์„ ์˜๋ฏธํ•˜๋ฉฐ GPU์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๋Š” ์š”์†Œ

CUDA

  • GPU๋ฅผ ์žฅ์ฐฉํ•˜๋”๋ผ๋„ ํŒŒ์ด์ฌ์—์„œ ์ด๋ฅผ ์ธ์‹ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค.

  • ํ…์„œํ”Œ๋กœ์šฐ๋‚˜ ํŒŒ์ดํ† ์น˜ ๋“ฑ์˜ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ ค๋ฉด CUDA๋ฅผ ์„ค์น˜ํ•ด์•ผ ํ•œ๋‹ค.

  • GPU์—์„œ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐ์ข… ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ฃผ๋Š” GPGPU(General-Purpose computing on Graphics Processing Units) ๊ธฐ์ˆ 

CuDNN

  • nvidia CUDA Deep Nerual Network Library์˜ ์•ฝ์ž

  • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์œ„ํ•œ GPU ๊ฐ€์†ํ™” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ ๊ธฐ์ดˆ ์š”์†Œ์™€ ๊ฐ™์€ ์ผ๋ฐ˜์ ์ธ ๋ฃจํ‹ด์„ ๋น ๋ฅด๊ฒŒ ์ดํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ฃผ๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

03 ํŒŒ์ดํ† ์น˜ ์„ค์น˜ํ•˜๊ธฐ

nothing

04 ๋ฐ˜๋“œ์‹œ ์•Œ์•„์•ผ ํ•˜๋Š” ํŒŒ์ดํ† ์น˜ ์Šคํ‚ฌ

์Šค์นผ๋ผ, ๋ฒกํ„ฐ, ๋งคํŠธ๋ฆญ์Šค, ํ…์„œ

  • torch.tensor ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ณ€์ˆ˜๋ฅผ ์„ ์–ธํ•  ์ˆ˜ ์žˆ๋‹ค.

  • +, -, *, / ๋ฅผ ์ด์šฉํ•ด์„œ ์ง์ ‘์ ์ธ ์‚ฌ์น™์—ฐ์‚ฐ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ torch.(add/sub/mul/div)๋ฅผ ์ด์šฉํ•œ ์‚ฌ์น™์—ฐ์‚ฐ๋„ ๊ฐ€๋Šฅํ•˜๋‹ค

  • ํ–‰๋ ฌ ์š”์†Œ๊ฐ„ ๊ณฑ์ด ์•„๋‹Œ ํ–‰๋ ฌ ๊ณฑ์€ torch.matmul๋กœ ๊ฐ€๋Šฅํ•˜๋‹ค.

Autograd

  • Autograd ๋ฐฉ์‹์„ ์ด์šฉํ•ด Back Propagation์œผ๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์—…๋ฐ์ดํŠธ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‰ฝ๊ฒŒ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

import torch

if torch.cuda.is_available():
    DEVICE = torch.device('cuda')
else:
    DEVICE = torch.device('cpu')
  • cuda.is_available()

    • ํ˜„์žฌ ํŒŒ์ด์ฌ์ด ์‹คํ–‰๋˜๊ณ  ์žˆ๋Š” ํ™˜๊ฒฝ์—์„œ torch moudle์„ ์ด์šฉํ•  ๋•Œ GPU๋ฅผ ์ด์šฉํ•ด ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๋ฉ”์„œ๋“œ

    • ์ฐธ์ด๋ฉด cuda ์žฅ๋น„๋ฅผ, ๊ฑฐ์ง“์ด๋ฉด cpu ์žฅ๋น„๋ฅผ ์ด์šฉํ•ด ๊ณ„์‚ฐํ•œ๋‹ค.

BATCH_SIZE = 64
INPUT_SIZE = 10000
HIDDEN_SIZE = 100
OUTPUT_SIZE = 10
  • BATCH_SIZE

    • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์—…๋ฐ์ดํŠธํ•  ๋•Œ ๊ณ„์‚ฐ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜

    • Input์œผ๋กœ ์ด์šฉ๋˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ 64๊ฐœ์ด๋‹ค.

  • INPUT_SIZE

    • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ์˜ Input์˜ ํฌ๊ธฐ์ด์ž ์ž…๋ ฅ์ธต์˜ ๋…ธ๋“œ ์ˆ˜๋ฅผ ์˜๋ฏธ.

    • BATCH_SIZE์™€ ํ˜ผ๋™ํ•˜๋ฉด ์•ˆ๋จ. BATCH๋Š” ๊ฐฏ์ˆ˜๋ฅผ, INPUT์€ ํฌ๊ธฐ๋ฅผ ์˜๋ฏธ

    • (64, 1000)์˜ ํ…์„œ๊ฐ€ ์ž…๋ ฅ๋˜๊ณ  ์ด ๋•Œ ๋งˆ๋‹ค ๊ฐ€์ค‘์น˜ ๊ฐฑ์‹ ์ด ์ผ์–ด๋‚จ

  • HIDDEN_SIZE

    • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ Input์„ ๋‹ค์ˆ˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ด์šฉํ•ด ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ์— ํ•œ ๋ฒˆ ๋” ๊ณ„์‚ฐ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์˜๋ฏธ

    • ์ž…๋ ฅ์ธต์—์„œ ์€๋‹‰์ธต์œผ๋กœ ์ „๋‹ฌ๋์„ ๋•Œ ์€๋‹‰์ธต์˜ ๋…ธ๋“œ ์ˆ˜๋ฅผ ์˜๋ฏธ

  • OUTPUT_SIZE

    • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ ์ตœ์ข…์œผ๋กœ ์ถœ๋ ฅ๋˜๋Š” ๊ฐ’์˜ ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ๋ฅผ ์˜๋ฏธ

x = torch.randn(BATCH_SIZE, 
                INPUT_SIZE, 
                device = DEVICE, 
                dtype = torch.float, 
                requires_grad = False)
y = torch.randn(BATCH_SIZE, 
                OUTPUT_SIZE, 
                device = DEVICE, 
                dtype = torch.float, 
                requires_grad = False)
w1 = torch.randn(INPUT_SIZE, 
                HIDDEN_SIZE, 
                device = DEVICE, 
                dtype = torch.float, 
                requires_grad = True)
w2 = torch.randn(HIDDEN_SIZE, 
                OUTPUT_SIZE, 
                device = DEVICE, 
                dtype = torch.float, 
                requires_grad = True)
  • randn

    • ํ‰๊ท ์ด 0, ํ‘œ์ฅฐํŽธ์ฐจ๊ฐ€ 1์ธ ์ •๊ทœ๋ถ„ํฌ์—์„œ ์ƒ˜ํ”Œ๋งํ•œ ๊ฐ’์œผ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธ

  • reguires_grad

    • ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋Œ€ํ•ด์„œ๋งŒ Gradient๋ฅผ ๊ณ„์‚ฐํ•˜๋ฉด ๋˜๋ฏ€๋กœ ๊ฐ€์ค‘์น˜์— ๋Œ€ํ•ด์„œ๋งŒ True๋กœ ์„ค์ •

learning_rate = 1e-6
for t in range(1, 501):
    y_pred = x.mm(w1).clamp(min = 0).mm(w2)
    
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 0:
        print("Iteration: ", t, "\t", "Loss: ", loss.item())
    loss.backward()
    
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        
        w1.grad.zero_()
        w2.grad.zero_()
  • learning_rate

    • ํ•™์Šต๋ฅ ์„ ์–ด๋–ป๊ฒŒ ์„ค์ •ํ•˜๋А๋ƒ์— ๋”ฐ๋ผ Gradient ๊ฐ’์— ๋”ฐ๋ฅธ ํ•™์Šต ์ •๋„๊ฐ€ ๊ฒฐ์ •๋œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์„ ์—…๋ฐ์ดํŠธํ•  ๋•Œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ์ด๊ธฐ๋„ ํ•˜๋‹ค.

  • y_pred

    • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ๊ฒฐ๊ด๊ฐ’์„ ๋ณดํ†ต ์˜ˆ์ธก๊ฐ’์ด๋ผ๊ณ  ํ‘œํ˜„ํ•œ๋‹ค.

    • x์™€ w1๊ณผ์˜ ํ–‰๋ ฌ ๊ณฑ ์—ฐ์‚ฐ์— ๋Œ€ํ•ด clamp ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜๊ณ  ๋‹ค์‹œ w2์™€์˜ ํ–‰๋ ฌ ๊ณฑ ์—ฐ์‚ฐ์„ ํ•œ๋‹ค.

  • clamp

    • ์—ฌ๊ธฐ์„œ๋Š” min๋งŒ ์ •์˜ ๋˜์—ˆ์œผ๋ฏ€๋กœ ReLU์™€ ๋™์ผํ•œ ์—ญํ• ์„ ํ•œ๋‹ค.

  • loss

    • ์˜ˆ์ธก๊ฐ’๊ณผ ์‹ค์ œ ๋ ˆ์ด๋ธ” ๊ฐ’์„ ๋น„๊ตํ•ด ์˜ค์ฐจ๋ฅผ ๊ณ„์‚ฐํ•œ ๊ฐ’์„ loss๋ผ๊ณ  ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ์ œ๊ณฑ๊ฐ’์˜ ์ฐจ๋ฅผ ๋น„๊ตํ–ˆ๋‹ค.

  • loss.backward()

    • loss๊ฐ’์— ๋Œ€ํ•ด backward() ๋ฉ”์„œ๋“œ๋ฅผ ์ด์šฉํ•˜๋ฉด ๊ฐ ํŒŒ๋ฆฌ๋ฏธํ„ฐ ๊ฐ’์— ๋Œ€ํ•ด Gradient๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด Back Propagation์„ ์ง„ํ–‰ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค.

  • with_torch.no_gard()

    • ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์— ๋Œ€ํ•ด Gradient๋ฅผ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•ด ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์„ ์—…๋ฐ์ดํŠธํ•  ๋•Œ๋Š” ํ•ด๋‹น ์‹œ์ ์˜ Gradient ๊ฐ’์„ ๊ณ ์ •ํ•œ ํ›„ ์—…๋ฐ์ดํŠธ๋ฅผ ์ง„ํ–‰ํ•ด์•ผ ํ•œ๋‹ค.

  • w.grad.zero_()

    • ๊ฐ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’์„ ์—…๋ฐ์ดํŠธ ํ–ˆ๋‹ค๋ฉด Gradient๋ฅผ ์ดˆ๊ธฐํ™” ํ•ด์„œ ๋‹ค์Œ ๋ฐ˜๋ณต๋ฌธ์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก Gradient๋ฅผ 0์œผ๋กœ ์„ค์ •ํ•œ๋‹ค.

Previous5 FriNext3 Wed

Last updated 4 years ago

Was this helpful?