๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ
  • I. pandas ์‹œ์ž‘ํ•˜๊ธฐ
  • II. pandas๋กœ 1์ฐจ์› ๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ - Series
  • III. Pandas๋กœ 2์ฐจ์› ๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ - dataframe
  • Pandas ํ™œ์šฉ 1. ์ผ๋ถ€๋ถ„๋งŒ ๊ด€์ฐฐํ•˜๊ธฐ
  • Pandas ํ™œ์šฉ 2. ๋ฐ์ดํ„ฐ ์ ‘๊ทผํ•˜๊ธฐ
  • Pandas ํ™œ์šฉ 3. "์กฐ๊ฑด"์„ ์ด์šฉํ•ด์„œ ๋ฐ์ดํ„ฐ ์ ‘๊ทผํ•˜๊ธฐ
  • Pandas ํ™œ์šฉ 4. ํ–‰์„ ๊ธฐ์ค€์œผ๋กœ ๋ฐ์ดํ„ฐ ์ ‘๊ทผํ•˜๊ธฐ
  • Pandas ํ™œ์šฉ 5. groupby
  • Mission:
  • ์˜คํ† ๋งˆํƒ€์™€ ์ปดํŒŒ์ผ๋Ÿฌ
  • CFG : removing ambiguous grammar

Was this helpful?

  1. 2020 TIL
  2. DEC

15 Tue

TIL

ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ

3์ฃผ์ฐจ DAY 2

I. pandas ์‹œ์ž‘ํ•˜๊ธฐ

Prerequisite : Table

  • ํ–‰๊ณผ ์—ด์„ ์ด์šฉํ•ด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š” ์ž๋ฃŒ๊ตฌ์กฐ(์ปจํ…Œ์ด๋„ˆ)

  • ์ฃผ๋กœ ํ–‰์€ ๊ฐœ์ฒด, ์—ด์€ ์†์„ฑ์„ ๋‚˜ํƒ€๋ƒ„

Pandas ์„ค์น˜ํ•˜๊ธฐ

pip install pandas

Pandas ์‹œ์ž‘ํ•˜๊ธฐ

import pandas๋ฅผ ํ†ตํ•ด์„œ ์ง„ํ–‰ pandas๋Š” ๊ด€์Šต์ ์œผ๋กœ pd ์ถ•์•ฝํ•ด์„œ ์‚ฌ์šฉ

import pandas as pd

II. pandas๋กœ 1์ฐจ์› ๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ - Series

Series?

  • 1-D labeled array

  • ์ธ๋ฑ์Šค๋ฅผ ์ง€์ •ํ•ด์ค„ ์ˆ˜ ์žˆ์Œ

s = pd.Series([1, 4, 9, 16, 25])

s
0     1
1     4
2     9
3    16
4    25
dtype: int64
t = pd.Series({'one':1, 'two':2, 'three':3, 'four':4, 'five':5})

t
one      1
two      2
three    3
four     4
five     5
dtype: int64

Series + Numpy

  • Series๋Š” ndarray์™€ ์œ ์‚ฌํ•˜๋‹ค!

s[1]
4
t[1]
# ๋”•์…”๋„ˆ๋ฆฌ๋„ ์ธ๋ฑ์Šค๋กœ ์ ‘๊ทผ ๊ฐ€๋Šฅํ•˜๋‹ค
2
t[1:3]
# ์Šฌ๋ผ์ด์‹ฑ๋„ ๊ฐ€๋Šฅํ•˜๋‹ค
two      2
three    3
dtype: int64
s [s > s.median()]
# ์ž๊ธฐ ์ž์‹ ์˜ median(์ค‘์•™๊ฐ’)๋ณด๋‹ค ํฐ ๊ฐ’๋“ค๋งŒ ์ถœ๋ ฅ
# pandas๋Š” ์ด๋Ÿฌํ•œ ๋‚ด์žฅ ํ•จ์ˆ˜๊ฐ€ ์กด์žฌํ•จ
3    16
4    25
dtype: int64
s[[3, 1, 4]]
3    16
1     4
4    25
dtype: int64
import numpy as np

np.exp(s)
0    0.265717
1    2.335211
2    0.802393
3    1.888751
4    0.897110
Name: ์ž„์˜์˜ ๋‚œ์ˆ˜, dtype: float64
s.dtype
dtype('int64')

pandas์™€ numpy์˜ ์œ ์‚ฌ์„ฑ์„ ๋ณผ ์ˆ˜ ์žˆ์Œ

Series + dict

  • series๋Š” dict์™€ ์œ ์‚ฌํ•˜๋‹ค

t['one']
1
# Series์— ๊ฐ’ ์ถ”๊ฐ€

t['six'] = 6
t
one      1
two      2
three    3
four     4
five     5
six      6
dtype: int64
'six' in t
True
'seven' in t
# t['seven'] : error ocuurence
False
t.get('seven')
# no return
t.get('seven', 0)
# if seven not in t then return 0
0

Series์— ์ด๋ฆ„ ๋ถ™์ด๊ธฐ

  • name์†์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.

  • ์ฒ˜์Œ Series๋ฅผ ๋งŒ๋“ค ๋•Œ ์ด๋ฆ„์„ ๋ถ™์ผ ์ˆ˜ ์žˆ๋‹ค.

s = pd.Series(np.random.randn(5), name="random_nums")
s

Numpy์˜ Random ํ•จ์ˆ˜ 3๊ฐ€

0   -1.325324
1    0.848102
2   -0.220157
3    0.635916
4   -0.108576
Name: random_nums, dtype: float64

dtype ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ Name๋„ ์ถœ๋ ฅ

s.name = "์ž„์˜์˜ ๋‚œ์ˆ˜"
s
0   -1.325324
1    0.848102
2   -0.220157
3    0.635916
4   -0.108576
Name: ์ž„์˜์˜ ๋‚œ์ˆ˜, dtype: float64

III. Pandas๋กœ 2์ฐจ์› ๋ฐ์ดํ„ฐ ๋‹ค๋ฃจ๊ธฐ - dataframe

dataframe?

  • 2-D labeled table

  • ์ธ๋ฑ์Šค๋ฅผ ์ง€์ •ํ•  ์ˆ˜๋„ ์žˆ์Œ

  • ํ‘œ๋‚˜ ํ…Œ์ด๋ธ”๋“ฑ์˜ 2์ฐจ์› ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ์— ๋ฆฌ์ŠคํŠธ๋Š” ๋ถ€์ ํ•ฉ

  • ๋”ฐ๋ผ์„œ, ๋”•์…”๋„ˆ๋ฆฌ ์‚ฌ์šฉ

d = {"height":[1, 2, 3, 4], "weight":[30, 40, 50, 60]}

df = pd.DataFrame(d) #DataFrame์˜ D์™€ F๊ฐ€ ๋Œ€๋ฌธ์ž์—ฌ์•ผํ•จ

df

height

weight

0

1

30

1

2

40

2

3

50

3

4

60

## dtype ํ™•์ธ
df.dtypes
height    int64
weight    int64
dtype: object

From CSV to DataFrame

  • CSV : Comma Separated Value

  • pandas๋Š” csv ํŒŒ์ผ์„ dataframeํ™” ํ•  ์ˆ˜์žˆ๋Š” ํ•จ์ˆ˜๋ฅผ ์ œ๊ณต

  • .read_csv()๋ฅผ ์ด์šฉ

  • ์‹ค์ œ๋กœ csv๋Š” ,๋กœ ๊ตฌ๋ถ„๋œ ๋ฐ์ดํ„ฐ๋“ค๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ์Œ

  • csv์˜ ๊ฐ ์ฒซ์ค„์—๋Š” ๊ฐ ์ปฌ๋Ÿผ์— ํ•ด๋‹นํ•˜๋Š” ํ•ญ๋ชฉ์ด๋ฆ„

# ๋™์ผ ๊ฒฝ๋กœ์— country_wise_latest.csv๊ฐ€ ์กด์žฌํ•ด์•ผํ•จ

covid = pd.read_csv("./country_wise_latest.csv")
covid

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

0

Afghanistan

36263

1269

25198

9796

106

10

18

3.50

69.49

5.04

35526

737

2.07

Eastern Mediterranean

1

Albania

4880

144

2745

1991

117

6

63

2.95

56.25

5.25

4171

709

17.00

Europe

2

Algeria

27973

1163

18837

7973

616

8

749

4.16

67.34

6.17

23691

4282

18.07

Africa

3

Andorra

907

52

803

52

10

0

0

5.73

88.53

6.48

884

23

2.60

Europe

4

Angola

950

41

242

667

18

1

0

4.32

25.47

16.94

749

201

26.84

Africa

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

182

West Bank and Gaza

10621

78

3752

6791

152

2

0

0.73

35.33

2.08

8916

1705

19.12

Eastern Mediterranean

183

Western Sahara

10

1

8

1

0

0

0

10.00

80.00

12.50

10

0

0.00

Africa

184

Yemen

1691

483

833

375

10

4

36

28.56

49.26

57.98

1619

72

4.45

Eastern Mediterranean

185

Zambia

4552

140

2815

1597

71

1

465

3.08

61.84

4.97

3326

1226

36.86

Africa

186

Zimbabwe

2704

36

542

2126

192

2

24

1.33

20.04

6.64

1713

991

57.85

Africa

187 rows ร— 15 columns

Pandas ํ™œ์šฉ 1. ์ผ๋ถ€๋ถ„๋งŒ ๊ด€์ฐฐํ•˜๊ธฐ

head(n) : ์ฒ˜์Œ n๊ฐœ์˜ ๋ฐ์ดํ„ฐ ์ฐธ์กฐ

# ์œ„์—์„œ๋ถ€ํ„ฐ 5๊ฐœ๋ฅผ ๊ด€์ฐฐํ•˜๋Š” ๋ฐฉ๋ฒ•(ํ•จ์ˆ˜)

covid.head(5)

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

0

Afghanistan

36263

1269

25198

9796

106

10

18

3.50

69.49

5.04

35526

737

2.07

Eastern Mediterranean

1

Albania

4880

144

2745

1991

117

6

63

2.95

56.25

5.25

4171

709

17.00

Europe

2

Algeria

27973

1163

18837

7973

616

8

749

4.16

67.34

6.17

23691

4282

18.07

Africa

3

Andorra

907

52

803

52

10

0

0

5.73

88.53

6.48

884

23

2.60

Europe

4

Angola

950

41

242

667

18

1

0

4.32

25.47

16.94

749

201

26.84

Africa

tail(n) : ๋งˆ์ง€๋ง‰ n๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฐธ์กฐ

# ์•„๋ž˜์—์„œ๋ถ€ํ„ฐ 5๊ฐœ๋ฅผ ๊ด€์ฐฐํ•˜๋Š” ๋ฐฉ๋ฒ•(ํ•จ์ˆ˜)

covid.tail(5)

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

182

West Bank and Gaza

10621

78

3752

6791

152

2

0

0.73

35.33

2.08

8916

1705

19.12

Eastern Mediterranean

183

Western Sahara

10

1

8

1

0

0

0

10.00

80.00

12.50

10

0

0.00

Africa

184

Yemen

1691

483

833

375

10

4

36

28.56

49.26

57.98

1619

72

4.45

Eastern Mediterranean

185

Zambia

4552

140

2815

1597

71

1

465

3.08

61.84

4.97

3326

1226

36.86

Africa

186

Zimbabwe

2704

36

542

2126

192

2

24

1.33

20.04

6.64

1713

991

57.85

Africa

Pandas ํ™œ์šฉ 2. ๋ฐ์ดํ„ฐ ์ ‘๊ทผํ•˜๊ธฐ

  • df['column_name'] or df.column_name

covid['Active'].head(3)
0    9796
1    1991
2    7973
Name: Active, dtype: int64
covid.Active.head(3)
0    9796
1    1991
2    7973
Name: Active, dtype: int64

column name์„ attribute๋กœ ์ ‘๊ทผํ•  ๋•Œ์—๋Š” spacebar๊ฐ€ ์ ์šฉ๋œ ๋ณ€์ˆ˜๋ช…์€ ์ ์šฉํ•˜์ง€ ๋ชปํ•˜๋Š” ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค.

ex) covid.Who Region O : covid["Who Region"] X : covid.Who Region

Honey Tip! Dataframe์˜ ๊ฐ column์€ "Series"์ด๋‹ค!

covid['Confirmed'][0]
36263
covid['Confirmed'][1:5]
1     4880
2    27973
3      907
4      950
Name: Confirmed, dtype: int64

Pandas ํ™œ์šฉ 3. "์กฐ๊ฑด"์„ ์ด์šฉํ•ด์„œ ๋ฐ์ดํ„ฐ ์ ‘๊ทผํ•˜๊ธฐ

# ์‹ ๊ทœ ํ™•์ง„์ž๊ฐ€ 100๋ช…์ด ๋„˜๋Š” ๋‚˜๋ผ๋ฅผ ์ฐพ์•„๋ณด์ž!
# ํ•ด๋‹นํ•˜๋Š” column์€ New cases

covid[covid['New cases'] > 100].head(3)

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

0

Afghanistan

36263

1269

25198

9796

106

10

18

3.50

69.49

5.04

35526

737

2.07

Eastern Mediterranean

1

Albania

4880

144

2745

1991

117

6

63

2.95

56.25

5.25

4171

709

17.00

Europe

2

Algeria

27973

1163

18837

7973

616

8

749

4.16

67.34

6.17

23691

4282

18.07

Africa

# unique() : ์ž๋ฃŒ์˜ ๋ฒ”์ฃผ๋ฅผ ์ค‘๋ณต ์—†์ด ์ถœ๋ ฅ
covid['WHO Region'].unique()
array(['Eastern Mediterranean', 'Europe', 'Africa', 'Americas',
       'Western Pacific', 'South-East Asia'], dtype=object)
# WHO ์ง€์—ญ์ด ๋™๋‚จ์•„์‹œ์•„์ธ ๋‚˜๋ผ ์ฐพ๊ธฐ
covid[covid['WHO Region'] == 'South-East Asia'].head(3)

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

13

Bangladesh

226225

2965

125683

97577

2772

37

1801

1.31

55.56

2.36

207453

18772

9.05

South-East Asia

19

Bhutan

99

0

86

13

4

0

1

0.00

86.87

0.00

90

9

10.00

South-East Asia

27

Burma

350

6

292

52

0

0

2

1.71

83.43

2.05

341

9

2.64

South-East Asia

Pandas ํ™œ์šฉ 4. ํ–‰์„ ๊ธฐ์ค€์œผ๋กœ ๋ฐ์ดํ„ฐ ์ ‘๊ทผํ•˜๊ธฐ

# ์˜ˆ์‹œ ๋ฐ์ดํ„ฐ - ๋„์„œ๊ด€ ์ •๋ณด

books_dict = {"Available":[True, False, False], "Location":[102, 215, 323], " Genre":["Programming", "Physics", "Math"]}

books_df = pd.DataFrame(books_dict, index=["๋ฒ„๊ทธ๋ž€ ๋ฌด์—‡์ธ๊ฐ€", "๋‘๊ทผ๋‘๊ทผ ๋ฌผ๋ฆฌํ•™", "๋ฏธ๋ถ„ํ•ด์ค˜ ํ™ˆ์ฆˆ"])

books_df

Available

Location

Genre

๋ฒ„๊ทธ๋ž€ ๋ฌด์—‡์ธ๊ฐ€

True

102

Programming

๋‘๊ทผ๋‘๊ทผ ๋ฌผ๋ฆฌํ•™

False

215

Physics

๋ฏธ๋ถ„ํ•ด์ค˜ ํ™ˆ์ฆˆ

False

323

Math

์ธ๋ฑ์Šค๋ฅผ ์ด์šฉํ•ด์„œ ๊ฐ€์ ธ์˜ค๊ธฐ : loc[row, col]

books_df.loc["๋ฒ„๊ทธ๋ž€ ๋ฌด์—‡์ธ๊ฐ€"]
Available           True
Location             102
 Genre       Programming
Name: ๋ฒ„๊ทธ๋ž€ ๋ฌด์—‡์ธ๊ฐ€, dtype: object
type(books_df.loc["๋ฒ„๊ทธ๋ž€ ๋ฌด์—‡์ธ๊ฐ€"])
pandas.core.series.Series
# "๋ฏธ๋ถ„ํ•ด์ค˜ ํ™ˆ์ฆˆ" ์ฑ…์ด ๋Œ€์ถœ ๊ฐ€๋Šฅํ•œ์ง€?

books_df.loc["๋ฏธ๋ถ„ํ•ด์ค˜ ํ™ˆ์ฆˆ", 'Available']
False

์ˆซ์ž ์ธ๋ฑ์Šค๋ฅผ ์ด์šฉํ•ด์„œ ๊ฐ€์ ธ์˜ค๊ธฐ : `.iloc[rowidx, colidx]

# ์ธ๋ฑ์Šค 0ํ–‰, 1์—ด

books_df.iloc[0, 1]
102
# ์ธ๋ฑ์Šค 1ํ–‰, 0~1์—ด

books_df.iloc[1, 0:2]
Available    False
Location       215
Name: ๋‘๊ทผ๋‘๊ทผ ๋ฌผ๋ฆฌํ•™, dtype: object

Pandas ํ™œ์šฉ 5. groupby

  • Split : ํŠน์ •ํ•œ "๊ธฐ์ค€"์„ ๋ฐ”ํƒ•์œผ๋กœ DataFrame์„ ๋ถ„ํ• 

  • Apply : ํ†ต๊ณ„ํ•จ์ˆ˜ - sum(), mean(), median(), - ์„ ์ ์šฉํ•ด์„œ ๊ฐ ๋ฐ์ดํ„ฐ๋ฅผ ์••์ถ•

  • Combine : Apply๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ƒˆ๋กœ์šด Series๋ฅผ ์ƒ์„ฑ (group_key : applied_value)

.groupby()

covid.head(5)

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

0

Afghanistan

36263

1269

25198

9796

106

10

18

3.50

69.49

5.04

35526

737

2.07

Eastern Mediterranean

1

Albania

4880

144

2745

1991

117

6

63

2.95

56.25

5.25

4171

709

17.00

Europe

2

Algeria

27973

1163

18837

7973

616

8

749

4.16

67.34

6.17

23691

4282

18.07

Africa

3

Andorra

907

52

803

52

10

0

0

5.73

88.53

6.48

884

23

2.60

Europe

4

Angola

950

41

242

667

18

1

0

4.32

25.47

16.94

749

201

26.84

Africa

# WHO Region๋ณ„ ํ™•์ง„์ž์ˆ˜

# 1. covid์—์„œ ํ™•์ง„์ž ์ˆ˜ column๋งŒ ์ถ”์ถœํ•œ๋‹ค
# 2. ์ด๋ฅผ covid WHO Region์„ ๊ธฐ์ค€์œผ๋กœ groupbyํ•œ๋‹ค

covid_by_region = covid['Confirmed'].groupby(by=covid["WHO Region"])

covid_by_region
<pandas.core.groupby.generic.SeriesGroupBy object at 0x00000205A35511C8>
covid_by_region.sum()
WHO Region
Africa                    723207
Americas                 8839286
Eastern Mediterranean    1490744
Europe                   3299523
South-East Asia          1835297
Western Pacific           292428
Name: Confirmed, dtype: int64
# ๊ตญ๊ฐ€๋‹น ๊ฐ์˜์ž ์ˆ˜

covid_by_region.mean()
WHO Region
Africa                    15066.812500
Americas                 252551.028571
Eastern Mediterranean     67761.090909
Europe                    58920.053571
South-East Asia          183529.700000
Western Pacific           18276.750000
Name: Confirmed, dtype: float64

Mission:

1. covid ๋ฐ์ดํ„ฐ์—์„œ 100 case ๋Œ€๋น„ ์‚ฌ๋ง๋ฅ (Deaths / 100 Cases)์ด ๊ฐ€์žฅ ๋†’์€ ๊ตญ๊ฐ€๋Š”?

covid.iloc[covid['Deaths / 100 Cases'].idxmax(), 0]
'Yemen'

2. covid ๋ฐ์ดํ„ฐ์—์„œ ์‹ ๊ทœ ํ™•์ง„์ž๊ฐ€ ์—†๋Š” ๋‚˜๋ผ ์ค‘ WHO Region์ด 'Europe'๋ฅผ ๋ชจ๋‘ ์ถœ๋ ฅํ•˜๋ฉด?

Hint : ํ•œ ์ค„์— ๋™์‹œ์— ๋‘๊ฐ€์ง€ ์กฐ๊ฑด์„ Applyํ•˜๋Š” ๊ฒฝ์šฐ Warning์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

cond = covid[covid['New cases'] == 0]
cond[cond['WHO Region'] == 'Europe']

Country/Region

Confirmed

Deaths

Recovered

Active

New cases

New deaths

New recovered

Deaths / 100 Cases

Recovered / 100 Cases

Deaths / 100 Recovered

Confirmed last week

1 week change

1 week % increase

WHO Region

56

Estonia

2034

69

1923

42

0

0

1

3.39

94.54

3.59

2021

13

0.64

Europe

75

Holy See

12

0

12

0

0

0

0

0.00

100.00

0.00

12

0

0.00

Europe

95

Latvia

1219

31

1045

143

0

0

0

2.54

85.73

2.97

1192

27

2.27

Europe

100

Liechtenstein

86

1

81

4

0

0

0

1.16

94.19

1.23

86

0

0.00

Europe

113

Monaco

116

4

104

8

0

0

0

3.45

89.66

3.85

109

7

6.42

Europe

143

San Marino

699

42

657

0

0

0

0

6.01

93.99

6.39

699

0

0.00

Europe

157

Spain

272421

28432

150376

93613

0

0

0

10.44

55.20

18.91

264836

7585

2.86

Europe

avocado = pd.read_csv("./avocado.csv")
avocado

Unnamed: 0

Date

AveragePrice

Total Volume

4046

4225

4770

Total Bags

Small Bags

Large Bags

XLarge Bags

type

year

region

0

0

2015-12-27

1.33

64236.62

1036.74

54454.85

48.16

8696.87

8603.62

93.25

0.0

conventional

2015

Albany

1

1

2015-12-20

1.35

54876.98

674.28

44638.81

58.33

9505.56

9408.07

97.49

0.0

conventional

2015

Albany

2

2

2015-12-13

0.93

118220.22

794.70

109149.67

130.50

8145.35

8042.21

103.14

0.0

conventional

2015

Albany

3

3

2015-12-06

1.08

78992.15

1132.00

71976.41

72.58

5811.16

5677.40

133.76

0.0

conventional

2015

Albany

4

4

2015-11-29

1.28

51039.60

941.48

43838.39

75.78

6183.95

5986.26

197.69

0.0

conventional

2015

Albany

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

18244

7

2018-02-04

1.63

17074.83

2046.96

1529.20

0.00

13498.67

13066.82

431.85

0.0

organic

2018

WestTexNewMexico

18245

8

2018-01-28

1.71

13888.04

1191.70

3431.50

0.00

9264.84

8940.04

324.80

0.0

organic

2018

WestTexNewMexico

18246

9

2018-01-21

1.87

13766.76

1191.92

2452.79

727.94

9394.11

9351.80

42.31

0.0

organic

2018

WestTexNewMexico

18247

10

2018-01-14

1.93

16205.22

1527.63

2981.04

727.01

10969.54

10919.54

50.00

0.0

organic

2018

WestTexNewMexico

18248

11

2018-01-07

1.62

17489.58

2894.77

2356.13

224.53

12014.15

11988.14

26.01

0.0

organic

2018

WestTexNewMexico

18249 rows ร— 14 columns

regions = avocado['region'].unique()
for region in regions:
    cond = avocado[avocado['region'] == region]
    print(avocado.iloc[cond['AveragePrice'].idxmax(),:])

์˜คํ† ๋งˆํƒ€์™€ ์ปดํŒŒ์ผ๋Ÿฌ

CFG : removing ambiguous grammar

Context Free Grammar๋Š” ๊ตฌ๋ฌธ ๋ถ„์„์„ ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ํšจ์œจ์„ ์ƒ๋‹นํžˆ ๋–จ์–ด๋œจ๋ฆฌ๋Š” ๊ฒฝ์šฐ์— ํšจ์œจ์ ์ธ ๊ตฌ๋ฌธ๋ถ„์„์ด ์ด๋ฃจ์–ด์ง€๋„๋ก ์ฃผ์–ด์ง„ ๋ฌธ๋ฒ•์„ ์ ๋‹นํ•œ ๋ฌธ๋ฒ•์œผ๋กœ ๋ฐ”๊พธ๋Š” ๋ฌธ๋ฒ• ๋ณ€ํ™˜์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋ชจํ˜ธํ•œ ๋ฌธ๋ฒ•์˜ ์ œ๊ฑฐ ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ๋ถˆํ•„์š”ํ•œ ์ƒ์„ฑ๊ทœ์น™์˜ ์ œ๊ฑฐ

  • ฮต-์ƒ์„ฑ๊ทœ์น™์˜ ์ œ๊ฑฐ

  • ๋‹จ์ผ ์ƒ์„ฑ๊ทœ์น™์˜ ์ œ๊ฑฐ

  • ์ขŒ์ธ์ˆ˜๋ถ„ํ•ด

  • ์ขŒ์žฌ๊ท€ ์ œ๊ฑฐ

์ด๋ฅผ ๊ตฌํ˜„ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. (์ฝ”๋“œ๋ฅผ ๋ณด๊ธฐ ์ „์— ์–ธ์„ ํ•˜์ž๋ฉด, ๊ตฌํ˜„๋œ ์ œ๊ฑฐ๋Š” ๋ถˆํ•„์š”ํ•œ ์ƒ์„ฑ๊ทœ์น™์˜ ์ œ๊ฑฐ, ฮต-์ƒ์„ฑ๊ทœ์น™์˜ ์ œ๊ฑฐ, ๋‹จ์ผ ์ƒ์„ฑ๊ทœ์น™์˜ ์ œ๊ฑฐ ๊นŒ์ง€์ด๋ฉฐ ์ด๋งˆ์ €๋„ ์™„๋ฒฝํ•˜๊ฒŒ ๊ตฌํ˜„๋˜์ง€ ์•Š์•˜๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ์ฐพ์€ ๋ฐ˜๋ก€๋กœ๋Š” S -> ABC, A -> B | a, B -> C | b, C -> A | c ์™€ ๊ฐ™์€ ์ˆœํ™˜ ์ฝ”๋“œ์— ๋Œ€ํ•ด์„œ ์ž‘๋™ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๊ทธ ์™ธ์—๋Š” ์ž˜ ์ž‘๋™ํ•œ๋‹ค๊ณ  ์ƒ๊ฐ์ด ๋“ค์ง€๋งŒ ์˜ค๋ฅ˜๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฐ˜๋ก€๊ฐ€ ์ถฉ๋ถ„ํžˆ ์žˆ์„ ๊ฒƒ์ด๋ผ ์˜ˆ์ƒํ•œ๋‹ค. ์ขŒ์ธ์ˆ˜๋ถ„ํ•ด์™€ ์ขŒ์žฌ๊ท€์ œ๊ฑฐ๋Š” ์ฝ”๋“œ๊ฐ€ ๋„ˆ๋ฌด ์ง€์ €๋ถ„ํ•ด์ ธ ๋Šฅ๋ ฅ์„ ๋ฒ—์–ด๋‚˜๋Š” ์ผ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ด ํฌ๊ธฐํ–ˆ๋‹ค.)

#
#   data = 2020.12.15
#   author = sangmandu at Dankook Univ.
#   program = Effective Context Free Grammar in that removing unnecessary(ambiguous) grammar
#   language = python
#

#
#   P = Set of grammar
#   S = StartSymbol
#   Z = S' (alternative S that express ฮต)
#   [A-Z] = Non terminal
#   [a-z][0-9][._()] = Terminal
#   ฮต = null
#

def initialization(P):
    dic = {}
    Vn, Vt = set(), set()
    for grammar in P:
        src, dst = grammar.split("->")
        Vn.add(src)
        dst = dst.split("|")
        dic.setdefault(src, [])
        for d in dst:
            dic[src].append(d)
            for letter in d:
                if letter.isupper():
                    Vn.add(letter)
                else:
                    Vt.add(letter)
    printResult(initialization.__name__, [dic, Vn, Vt])
    return dic, Vn, Vt

def refreshVnVt(dic):
    Vn, Vt = set(), set()
    for key, values in dic.items():
        Vn.add(key)
        for value in values:
            for letter in value:
                if not letter.isupper():
                    Vt.add(letter)
    return Vn, Vt


def checkNeed(dic, Vn, flag=1):
    stack = ['S']
    _Vn = set()
    while stack:
        nt = stack.pop(0)
        _Vn.add(nt)
        for symbol in dic[nt]:
            for letter in symbol:
                if letter.isupper() and letter not in _Vn and letter not in stack:
                    stack.append(letter)
    for nt in Vn - _Vn:
        del dic[nt]
    Vn, Vt = refreshVnVt(dic)
    if flag:
        printResult(checkNeed.__name__, [dic, Vn, Vt])
    return Vn, Vt

def checkNull(dic, Vn, Vt):
    if 'ฮต' not in Vt: return Vn, Vt
    _Nt = []
    for nt in Vn:
        if 'ฮต' in dic[nt]:
            _Nt.append(nt)

    size = 0
    while len(_Nt) != size:
        size = len(_Nt)
        for nt in _Nt:
            for key, value in dic.items():
                for v in value:
                    if nt in v and key not in _Nt:
                        _Nt.append(key)
    for key in Vn:
        stack = dic[key][:]
        dup = []
        while stack:
            value = stack.pop(0)
            if value == "ฮต":
                continue
            if not value.isupper():
                dic[key].append(value)

            for idx, letter in enumerate(value):
                if letter in _Nt and (value, idx) not in dup:
                    stack.append(value)
                    dup.append((value, idx))
                    stack.append(value[:idx]+value[idx+1:])
            else:
                if value and value not in dic[key]:
                    dic[key].append(value)

    for key, value in dic.items():
        dic[key] = list(set(value))
        while "ฮต" in dic[key]:
            dic[key].remove("ฮต")
        while "" in dic[key]:
            dic[key].remove("")

    dic["Z"], dic["S"] = dic["S"], ["Z", "ฮต"]
    Vn, Vt = refreshVnVt(dic)
    printResult(checkNull.__name__, [dic, Vn, Vt])
    return Vn, Vt

def checkNtoN(dic):
    from itertools import product
    temp = 0
    while True:
        length = sum([len(dic[x]) for x in dic.keys()])
        if temp == length: break
        temp = length
        replace = []
        for key, values in dic.items():
            for value in values:
                if all([letter.isupper() for letter in value]):
                    replace.append((key, value))

        for key, value in replace:
            dic[key].remove(value)
            addvalue = []
            for letter in value:
                addvalue.append(dic[letter])
            for item in list(product(*addvalue)):
                dic[key].append(''.join(item))
    Vn, Vt = refreshVnVt(dic)
    Vn, Vt = checkNeed(dic, Vn, 0)
    printResult(checkNtoN.__name__, [dic, Vn, Vt])
    return Vn, Vt


def checkLeftRecur(dic, Vn):
    Vn, Vt = refreshVnVt(dic)
    printResult(checkLeftRecur.__name__, [dic, Vn, Vt])
    return Vn, Vt


def checkLeftFactor(dic, Vn):
    Vn, Vt = refreshVnVt(dic)
    printResult(checkLeftFactor.__name__, [dic, Vn, Vt])
    return Vn, Vt

def printResult(funcName, arr):
    print()
    print(f"func {funcName}")
    p = ["dic", "Vn", "Vt"]
    for idx, val in enumerate(arr):
        print(f"{p[idx]} = {val}")

P1 = {"S->aB", "A->aB|aC", "B->C|Ee|Bb", "C->b", "D->c", "E->fEgE|gEfE|ฮต"}
P2 = {"S->ABCD", "A->B|a", "B->C|b", "C->c|ฮต", "D->Dd"}
P3 = {"S->A|B", "A->C", "C->c", "B->ED|b", "E->e|f", "D->d"}

for P in [P1, P2, P3]:
    print("---------------")
    print(P)
    dic, Vn, Vt = initialization(P)
    Vn, Vt = checkNeed(dic, Vn)
    Vn, Vt = checkNull(dic, Vn, Vt)
    Vn, Vt = checkNtoN(dic)
    Vn, Vt = checkLeftFactor(dic, Vn)
    Vn, Vt = checkLeftRecur(dic, Vn)
    print("---------------")

Previous16 WedNext14 Mon

Last updated 4 years ago

Was this helpful?

3. ๋‹ค์Œ ๋ฅผ ์ด์šฉํ•ด ๊ฐ Region๋ณ„๋กœ ์•„๋ณด์นด๋„๊ฐ€ ๊ฐ€์žฅ ๋น„์‹ผ ํ‰๊ท ๊ฐ€๊ฒฉ(AveragePrice)์„ ์ถœ๋ ฅํ•˜๋ฉด?

๋ฐ์ดํ„ฐ
python random๋ชจ๋“ˆ 3๊ฐœ ์ •๋ฆฌ (randint, rand, randn)๋™์‹ ํ•œ์˜ ์กฐ์žฌ์„ฑ - ๋จธ์‹ ๋Ÿฌ๋‹, ๋”ฅ๋Ÿฌ๋‹, ์•ˆ๋“œ๋กœ์ด๋“œ ๊ฐœ๋ฐœ in ๋‚จ๋ฃก๋ถ๋งค
Logo