๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [์ธํ”„๋Ÿฐ] ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
  • - Summarize Data
  • ํŒ๋‹ค์Šค๋กœ apply ํ™œ์šฉํ•˜๊ธฐ lambda ์ต๋ช…ํ•จ์ˆ˜ ์‚ฌ์šฉํ•˜๊ธฐ - Summarize Data
  • fillna, dropna๋กœ ๊ฒฐ์ธก์น˜ ๋‹ค๋ฃจ๊ธฐ - Handling Missing Data
  • assign ์œผ๋กœ ์ƒˆ๋กœ์šด ์ปฌ๋Ÿผ ๋งŒ๋“ค๊ธฐ, qcut์œผ๋กœ binning, bucketing ํ•˜๊ธฐ - Make New Columns

Was this helpful?

  1. 2021 TIL
  2. JAN

3 Sun

TIL

[์ธํ”„๋Ÿฐ] ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ

- Summarize Data

import pandas as pd
import seaborn as sns
import numpy as np
df = sns.load_dataset('iris')
df.shape
(150, 5)
df.head(2)

sepal_length

sepal_width

petal_length

petal_width

species

0

5.1

3.5

1.4

0.2

setosa

1

4.9

3.0

1.4

0.2

setosa

df['w'].value_counts()

ํ•ด๋‹น ํ‚ค์˜ ์›์†Œ์˜ ๊ฐœ์ˆ˜๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. ์ข…๋ฅ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ํ™•์ธํ•  ๋•Œ ์œ ์šฉํ•˜๋‹ค.

df['species'].value_counts()
setosa        50
virginica     50
versicolor    50
Name: species, dtype: int64
df['petal_width'].value_counts()
0.2    29
1.3    13
1.5    12
1.8    12
1.4     8
2.3     8
1.0     7
0.3     7
0.4     7
2.0     6
2.1     6
0.1     5
1.2     5
1.9     5
1.6     4
2.5     3
2.2     3
2.4     3
1.1     3
1.7     2
0.6     1
0.5     1
Name: petal_width, dtype: int64
pd.DataFrame(df['species'].value_counts())

species

setosa

50

virginica

50

versicolor

50

len(df)

df์˜ ๊ธธ์ด๋ฅผ ์•Œ ์ˆ˜ ์žˆ๋‹ค. shape๋กœ๋„ ์•Œ ์ˆ˜ ์žˆ์Œ

len(df)
150
df.shape[0], df.shape[1]
(150, 5)
len(df) == df.shape[0]
True

df['w'].nunique()

๊ณ ์œ ๊ฐ’์˜ ๊ฐœ์ˆ˜๋ฅผ ๋ณด์—ฌ์ค€๋‹ค

df['species'].nunique()
3
df['sepal_width'].nunique()
23

df.describe()

์ˆ˜์น˜ํ˜• ๋ฐ์ดํ„ฐ๋“ค์— ๋Œ€ํ•œ ํ†ต๊ณ„๊ฐ’์„ ๋ณด์—ฌ์ค€๋‹ค. [option] include : ํฌํ•จ, exclude : ์ œ์™ธ all : ๋ฐ์ดํ„ฐ ํƒ€์ž…๊ณผ ๊ด€๋ จ์—†์ด ๋ชจ๋“  ๋ฐ์ดํ„ฐ np.number : numpy๋กœ ์ˆซ์ž ํ˜•ํƒœ์˜ ๋ฐ์ดํ„ฐ np.object : object ํƒ€์ž…์˜ ๋ฐ์ดํ„ฐ category : category ํƒ€์ž…์˜ ๋ฐ์ดํ„ฐ

df.describe()

sepal_length

sepal_width

petal_length

petal_width

count

150.000000

150.000000

150.000000

150.000000

mean

5.843333

3.057333

3.758000

1.199333

std

0.828066

0.435866

1.765298

0.762238

min

4.300000

2.000000

1.000000

0.100000

25%

5.100000

2.800000

1.600000

0.300000

50%

5.800000

3.000000

4.350000

1.300000

75%

6.400000

3.300000

5.100000

1.800000

max

7.900000

4.400000

6.900000

2.500000

df.describe(include='all')

sepal_length

sepal_width

petal_length

petal_width

species

count

150.000000

150.000000

150.000000

150.000000

150

unique

NaN

NaN

NaN

NaN

3

top

NaN

NaN

NaN

NaN

setosa

freq

NaN

NaN

NaN

NaN

50

mean

5.843333

3.057333

3.758000

1.199333

NaN

std

0.828066

0.435866

1.765298

0.762238

NaN

min

4.300000

2.000000

1.000000

0.100000

NaN

25%

5.100000

2.800000

1.600000

0.300000

NaN

50%

5.800000

3.000000

4.350000

1.300000

NaN

75%

6.400000

3.300000

5.100000

1.800000

NaN

max

7.900000

4.400000

6.900000

2.500000

NaN

df.describe(include=[np.object])

species

count

150

unique

3

top

setosa

freq

50

setosa ์ข…์ด ๊ฐ€์žฅ ๋งŽ์ด ๋“ฑ์žฅํ•˜๋Š” ์ข… ์ค‘์—์„œ ํ•˜๋‚˜์ธ๋ฐ 50๋ฒˆ ๋“ฑ์žฅํ•œ๋‹ค.

some functions()

sum()
Sum values of each object.
count()
Count non-NA/null values of
each object.
median()
Median value of each object.
quantile([0.25,0.75])
Quantiles of each object.
apply(function)
Apply function to each object.
min()
Minimum value in each object.
max()
Maximum value in each object.
mean()
Mean value of each object.
var()
Variance of each object.
std()
Standard deviation of each
object.
# ์ดํ•ฉ
df['petal_width'].sum()
179.90000000000003
# ๊ฐฏ์ˆ˜
df['petal_width'].count()
150
# ์ค‘๊ฐ„๊ฐ’
df['petal_width'].median()
1.3
# ํ‰๊ท ๊ฐ’
df['petal_width'].mean()
1.1993333333333336
# ์‚ฌ๋ถ„์œ„๊ฐ’
df.quantile([0.25, 0.75])

sepal_length

sepal_width

petal_length

petal_width

0.25

5.1

2.8

1.6

0.3

0.75

6.4

3.3

5.1

1.8

# ๋ถ„์‚ฐ
df.var()
sepal_length    0.685694
sepal_width     0.189979
petal_length    3.116278
petal_width     0.581006
dtype: float64
# ํ‘œ์ค€ํŽธ์ฐจ
df.std()
sepal_length    0.828066
sepal_width     0.435866
petal_length    1.765298
petal_width     0.762238
dtype: float64

ํŒ๋‹ค์Šค๋กœ apply ํ™œ์šฉํ•˜๊ธฐ lambda ์ต๋ช…ํ•จ์ˆ˜ ์‚ฌ์šฉํ•˜๊ธฐ - Summarize Data

df.apply()

df.apply(lambda x : x[2])
sepal_length       4.7
sepal_width        3.2
petal_length       1.3
petal_width        0.2
species         setosa
dtype: object
df['species_3'] = df['species'].apply(lambda x : x[:3])
df

sepal_length

sepal_width

petal_length

petal_width

species

species_3

0

5.1

3.5

1.4

0.2

setosa

set

1

4.9

3.0

1.4

0.2

setosa

set

2

4.7

3.2

1.3

0.2

setosa

set

3

4.6

3.1

1.5

0.2

setosa

set

4

5.0

3.6

1.4

0.2

setosa

set

...

...

...

...

...

...

...

145

6.7

3.0

5.2

2.3

virginica

vir

146

6.3

2.5

5.0

1.9

virginica

vir

147

6.5

3.0

5.2

2.0

virginica

vir

148

6.2

3.4

5.4

2.3

virginica

vir

149

5.9

3.0

5.1

1.8

virginica

vir

150 rows ร— 6 columns

# ๋’ค์—์„œ 3๋ฒˆ์งธ ๊นŒ์ง€์˜ ๋ฌธ์ž๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ํ•จ์ˆ˜
def smp(x):
    x = x[-3:]
    return x
df['species-3'] = df['species'].apply(smp)
df

sepal_length

sepal_width

petal_length

petal_width

species

species_3

species-3

0

5.1

3.5

1.4

0.2

setosa

set

osa

1

4.9

3.0

1.4

0.2

setosa

set

osa

2

4.7

3.2

1.3

0.2

setosa

set

osa

3

4.6

3.1

1.5

0.2

setosa

set

osa

4

5.0

3.6

1.4

0.2

setosa

set

osa

...

...

...

...

...

...

...

...

145

6.7

3.0

5.2

2.3

virginica

vir

ica

146

6.3

2.5

5.0

1.9

virginica

vir

ica

147

6.5

3.0

5.2

2.0

virginica

vir

ica

148

6.2

3.4

5.4

2.3

virginica

vir

ica

149

5.9

3.0

5.1

1.8

virginica

vir

ica

150 rows ร— 7 columns

fillna, dropna๋กœ ๊ฒฐ์ธก์น˜ ๋‹ค๋ฃจ๊ธฐ - Handling Missing Data

๊ฒฐ์ธก์น˜(Not a ...) ์— ๋Œ€ํ•ด์„œ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•

df.dropna()
Drop rows with any column having NA/null data.
df.fillna(value)
Replace all NA/null data with value.
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
                   "toy": [np.nan, 'Batmobile', 'Bullwhip'],
                   "born": [pd.NaT, pd.Timestamp("1940-04-25"),pd.NaT]})
df

name

toy

born

0

Alfred

NaN

NaT

1

Batman

Batmobile

1940-04-25

2

Catwoman

Bullwhip

NaT

df.dropna?
# axis = 0 : ํ–‰, axis = 1 : ์—ด
# how = 'all' : ๋ชจ๋‘ ๋„ ๊ฐ’์ผ ๋•Œ, how = 'any' : ํ•˜๋‚˜๋ผ๋„ ๋„ ๊ฐ’์ผ ๋•Œ
df.dropna(axis=1, how='all')

name

toy

born

0

Alfred

NaN

NaT

1

Batman

Batmobile

1940-04-25

2

Catwoman

Bullwhip

NaT

df.dropna(axis=1, how='any')

name

0

Alfred

1

Batman

2

Catwoman

df.dropna(axis=0, how='any')

name

toy

born

1

Batman

Batmobile

1940-04-25

df.fillna?
df = pd.DataFrame([[np.nan, 2, np.nan, 0],
                   [3, 4, np.nan, 1],
                   [np.nan, np.nan, np.nan, 5],
                   [np.nan, 3, np.nan, 4]],
                  columns=list('ABCD'))
df

A

B

C

D

0

NaN

2.0

NaN

0

1

3.0

4.0

NaN

1

2

NaN

NaN

NaN

5

3

NaN

3.0

NaN

4

values = {'A' : 0, 'B' : 1, 'C' : 2, 'D' : 3}
df.fillna(value=values)

A

B

C

D

0

0.0

2.0

2.0

0

1

3.0

4.0

2.0

1

2

0.0

1.0

2.0

5

3

0.0

3.0

2.0

4

df.fillna(df['D'].mean())

A

B

C

D

0

2.5

2.0

2.5

0

1

3.0

4.0

2.5

1

2

2.5

2.5

2.5

5

3

2.5

3.0

2.5

4

df.isnull()

A

B

C

D

0

True

False

True

False

1

False

False

True

False

2

True

True

True

False

3

True

False

True

False

df.isnull().sum()
A    3
B    1
C    4
D    0
dtype: int64
df.notnull().sum()
A    1
B    3
C    0
D    4
dtype: int64

assign ์œผ๋กœ ์ƒˆ๋กœ์šด ์ปฌ๋Ÿผ ๋งŒ๋“ค๊ธฐ, qcut์œผ๋กœ binning, bucketing ํ•˜๊ธฐ - Make New Columns

df = pd.DataFrame({'A': range(1, 11),
                  'B' : np.random.randn(10)})
df

A

B

0

1

0.052204

1

2

-1.489858

2

3

0.427285

3

4

1.148815

4

5

-1.301116

5

6

1.739656

6

7

1.000600

7

8

-1.672363

8

9

0.301468

9

10

-0.221703

df.assign(Area=lambda df: df.Length*df.Height)
Compute and append one or more new columns.
df['Volume'] = df.Length*df.Height*df.Depth
Add single column.
df.assign?
df.assign(ln_A = lambda x: np.log(x.A)).head()

A

B

ln_A

0

1

0.052204

0.000000

1

2

-1.489858

0.693147

2

3

0.427285

1.098612

3

4

1.148815

1.386294

4

5

-1.301116

1.609438

df['ln_A'] = np.log(df.A).head()
df.head()

A

B

ln_A

0

1

0.052204

0.000000

1

2

-1.489858

0.693147

2

3

0.427285

1.098612

3

4

1.148815

1.386294

4

5

-1.301116

1.609438

assign์„ ํ†ตํ•ด์„œ ์ƒˆ๋กœ์šด ์ปฌ๋Ÿผ์„ ๋งŒ๋“ค๊ฑฐ๋‚˜, ์ง์ ‘ ํ• ๋‹น์„ ํ•ด์„œ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค

pd.qcut(df.col, n, labels=False)
Bin column into n buckets.

n๊ฐœ์˜ ๋ฒ„ํ‚ท ์ˆ˜ ๋งŒํผ ์ƒˆ๋กœ์šด ์ปฌ๋Ÿผ์„ ๋งŒ๋“ค์œผ๋ผ๋Š” ์˜๋ฏธ

pd.qcut?
pd.qcut(range(5), 4)
[(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]]
Categories (4, interval[float64]): [(-0.001, 1.0] < (1.0, 2.0] < (2.0, 3.0] < (3.0, 4.0]]
pd.qcut(range(5), 3, labels=["good", "medium", "bad"])
['good', 'good', 'medium', 'bad', 'bad']
Categories (3, object): ['good' < 'medium' < 'bad']
pd.qcut(df.B, 3, labels=["good", "medium", "bad"])
0    medium
1      good
2    medium
3       bad
4      good
5       bad
6       bad
7      good
8    medium
9      good
Name: B, dtype: category
Categories (3, object): ['good' < 'medium' < 'bad']
pd.qcut(df.B, 2, labels=["good", "bad"])
0    good
1    good
2     bad
3     bad
4    good
5     bad
6     bad
7    good
8     bad
9    good
Name: B, dtype: category
Categories (2, object): ['good' < 'bad']
max(axis=1)
Element-wise max.
clip(lower=-10,upper=10)
Trim values at input thresholds
min(axis=1)
Element-wise min.
abs()
Absolute value.
df.max(axis = 0)
A       10.000000
B        1.739656
ln_A     1.609438
dtype: float64
df.max(axis = 1)
0     1.0
1     2.0
2     3.0
3     4.0
4     5.0
5     6.0
6     7.0
7     8.0
8     9.0
9    10.0
dtype: float64
df.min(axis = 0)
A       1.000000
B      -1.672363
ln_A    0.000000
dtype: float64
df.max(axis = 1)
0     1.0
1     2.0
2     3.0
3     4.0
4     5.0
5     6.0
6     7.0
7     8.0
8     9.0
9    10.0
dtype: float64
df['A'].clip(lower=-10,upper=10)
0     1
1     2
2     3
3     4
4     5
5     6
6     7
7     8
8     9
9    10
Name: A, dtype: int64
df['A'].clip(lower=2,upper=8)
0    2
1    2
2    3
3    4
4    5
5    6
6    7
7    8
8    8
9    8
Name: A, dtype: int64
df['B'].clip(lower=1,upper=1.5)
0    1.000000
1    1.000000
2    1.000000
3    1.148815
4    1.000000
5    1.500000
6    1.000600
7    1.000000
8    1.000000
9    1.000000
Name: B, dtype: float64
df["B"]
0    0.052204
1   -1.489858
2    0.427285
3    1.148815
4   -1.301116
5    1.739656
6    1.000600
7   -1.672363
8    0.301468
9   -0.221703
Name: B, dtype: float64
df["B"].abs()
0    0.052204
1    1.489858
2    0.427285
3    1.148815
4    1.301116
5    1.739656
6    1.000600
7    1.672363
8    0.301468
9    0.221703
Name: B, dtype: float64
Previous4 MonNext2 Sat

Last updated 4 years ago

Was this helpful?