2 Sat

TIL

[์ธํ”„๋Ÿฐ] ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ

์ผ๋ถ€ ์ปฌ๋Ÿผ์„ ๊ธฐ์ค€์œผ๋กœ ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ - Subset Variables (Columns)

import seaborn as sns
df = sns.load_dataset("iris")
df.head()

sepal_length

sepal_width

petal_length

petal_width

species

0

5.1

3.5

1.4

0.2

setosa

1

4.9

3.0

1.4

0.2

setosa

2

4.7

3.2

1.3

0.2

setosa

3

4.6

3.1

1.5

0.2

setosa

4

5.0

3.6

1.4

0.2

setosa

columns = ['sepal_length', 'sepal_width', 'species']
df[columns].head()

sepal_length

sepal_width

species

0

5.1

3.5

setosa

1

4.9

3.0

setosa

2

4.7

3.2

setosa

3

4.6

3.1

setosa

4

5.0

3.6

setosa

df['sepal_width'].head()
0    3.5
1    3.0
2    3.2
3    3.1
4    3.6
Name: sepal_width, dtype: float64
df.sepal_width.head()
0    3.5
1    3.0
2    3.2
3    3.1
4    3.6
Name: sepal_width, dtype: float64
df.filter(regex='regex').head(5)

0

1

2

3

4

ํ˜„์žฌ๋Š” ์กฐ๊ฑด์ด ์—†์–ด์„œ ์ธ๋ฑ์Šค๋งŒ ์ถ”์ถœ

df.filter(regex='\.').head(5)

0

1

2

3

4

'.' ์ด ๋“ค์–ด๊ฐ„ column์„ ์ถ”์ถœํ•œ๋‹ค. ์ด ๋•Œ๋Š” '.'์ด ๋“ค์–ด๊ฐ„ column์ด ์—†๋‹ค. ๋˜ํ•œ '.'์€ ์ •๊ทœ์‹์—์„œ ๋‹ค๋ฅธ ์˜๋ฏธ๋กœ๋„ ์“ฐ์ด๊ธฐ ๋•Œ๋ฌธ์— \. ๋กœ ์‚ฌ์šฉํ•œ๋‹ค.

df.filter(regex='_').head(5)

sepal_length

sepal_width

petal_length

petal_width

0

5.1

3.5

1.4

0.2

1

4.9

3.0

1.4

0.2

2

4.7

3.2

1.3

0.2

3

4.6

3.1

1.5

0.2

4

5.0

3.6

1.4

0.2

df.filter(regex='length$').head(5)

sepal_length

petal_length

0

5.1

1.4

1

4.9

1.4

2

4.7

1.3

3

4.6

1.5

4

5.0

1.4

$๊ฐ€ ๋’ค์—์˜ค๋ฉด ํŠน์ • ๋ฌธ์ž๋กœ ๋๋‚˜๋Š” ๊ฒฐ๊ณผ๋งŒ ์ถ”์ถœํ•œ๋‹ค.

df.filter(regex='^sepal').head(5)

sepal_length

sepal_width

0

5.1

3.5

1

4.9

3.0

2

4.7

3.2

3

4.6

3.1

4

5.0

3.6

^๊ฐ€ ์•ž์—์˜ค๋ฉด ํŠน์ • ๋ฌธ์ž๋กœ ์‹œ์ž‘ํ•˜๋Š” ๊ฒฐ๊ณผ๋งŒ ์ถ”์ถœํ•œ๋‹ค.

df.filter(regex='^(?!Species$).*').head(5)

sepal_length

sepal_width

petal_length

petal_width

species

0

5.1

3.5

1.4

0.2

setosa

1

4.9

3.0

1.4

0.2

setosa

2

4.7

3.2

1.3

0.2

setosa

3

4.6

3.1

1.5

0.2

setosa

4

5.0

3.6

1.4

0.2

setosa

loc๋ฅผ ์ด์šฉํ•ด์„œ ๋ฒ”์œ„ ์„ค์ •์„ ํ•  ์ˆ˜ ์žˆ๋‹ค.

df.loc[2:5, 'sepal_width':'petal_width']

sepal_width

petal_length

petal_width

2

3.2

1.3

0.2

3

3.1

1.5

0.2

4

3.6

1.4

0.2

5

3.9

1.7

0.4

df.iloc[-5:, [1,2,4]]

sepal_width

petal_length

species

145

3.0

5.2

virginica

146

2.5

5.0

virginica

147

3.0

5.2

virginica

148

3.4

5.4

virginica

149

3.0

5.1

virginica

df.loc[df['sepal_length'] > 5], ['sepal_length','sepal_width']
(     sepal_length  sepal_width  petal_length  petal_width    species
 0             5.1          3.5           1.4          0.2     setosa
 5             5.4          3.9           1.7          0.4     setosa
 10            5.4          3.7           1.5          0.2     setosa
 14            5.8          4.0           1.2          0.2     setosa
 15            5.7          4.4           1.5          0.4     setosa
 ..            ...          ...           ...          ...        ...
 145           6.7          3.0           5.2          2.3  virginica
 146           6.3          2.5           5.0          1.9  virginica
 147           6.5          3.0           5.2          2.0  virginica
 148           6.2          3.4           5.4          2.3  virginica
 149           5.9          3.0           5.1          1.8  virginica
 
 [118 rows x 5 columns],
 ['sepal_length', 'sepal_width'])

Last updated

Was this helpful?