๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [AI ์Šค์ฟจ 1๊ธฐ] 6์ฃผ์ฐจ DAY 1
  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ(Gaussian Distribution)
  • ์กฐ๊ฑด๋ถ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ(Conditional Gaussian Distribution)
  • ์ฃผ๋ณ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ(Marginal Gaussian Distributions)
  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ์œ„ํ•œ ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ(Bayes' Theorem for Gaussian Variables)
  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ ์ตœ๋Œ€์šฐ๋„(Maximum Likelihood for the Gaussian)
  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ์œ„ํ•œ ๋ฒ ์ด์ง€์•ˆ ์ถ”๋ก (Bayesian Inference for the Gaussian)

Was this helpful?

  1. 2021 TIL
  2. JAN

11 Mon

TIL

Previous12 TueNext10 Sun

Last updated 4 years ago

Was this helpful?

[AI ์Šค์ฟจ 1๊ธฐ] 6์ฃผ์ฐจ DAY 1

์ถœ์ฒ˜ :

๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ(Gaussian Distribution)

  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๊ฐ€ ์ผ์–ด๋‚˜๋Š” ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ƒํ™ฉ

    • ์ •๋ณด์ด๋ก ์—์„œ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ตœ๋Œ€ํ™”์‹œํ‚ค๋Š” ํ™•๋ฅ ๋ถ„ํฌ

    • ์ค‘์‹ฌ๊ทนํ•œ ์ •๋ฆฌ

  • ๋‹จ์ผ ๋ณ€์ˆ˜ x

  • D์ฐจ์› ๋ฒกํ„ฐ x

    : D์ฐจ์›์˜ ํ‰๊ท  ๋ฒกํ„ฐ

    : DxDํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ

    ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์œผ๋กœ ์ฃผ์–ด์ง„๊ฒŒ ์•„๋‹ˆ๋ผ ์œ„์˜ ํ˜•ํƒœ์˜ ํ•จ์ˆ˜๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ mu, sigma๊ฐ€ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ์ฃผ์–ด์ ธ์žˆ์„ ๋•Œ, ํ™•๋ฅ ๋ฐ€๋„ํ•จ์ˆ˜์˜ ํ‰๊ท ๊ณผ ๊ณต๋ถ„์‚ฐ์ด mu, sigma๊ฐ€ ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์œ ๋„โ—

  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ ๊ธฐํ•˜ํ•™์ ์ธ ํ˜•ํƒœ

    • x์— ๋Œ€ํ•œ ํ•จ์ˆ˜์  ์ข…์†์„ฑ์€ ์ง€์ˆ˜๋ถ€์— ๋“ฑ์žฅํ•˜๋Š” ์ด์ฐจํ˜•์‹(quadratic form)

    • ๊ฐ€ ๊ณต๋ถ„์‚ฐ์œผ๋กœ ์ฃผ์–ด์ง„ ๊ฒƒ์€ ์•„๋‹ˆ๋ฏ€๋กœ ์ฒ˜์Œ๋ถ€ํ„ฐ ์ด ํ–‰๋ ฌ์ด ๋Œ€์นญ์ด๋ผ๊ณ  ๋ฏธ๋ฆฌ ๊ฐ€์ •ํ•  ํ•„์š” xโ—

    • ํ•˜์ง€๋งŒ, ์„ ํ˜•๋Œ€์ˆ˜์—์„œ ๋ฐฐ์› ๋“ฏ ์ด์ฐจํ˜•์‹์— ๋‚˜ํƒ€๋‚˜๋Š” ํ–‰๋ ฌ์€ ์˜ค์ง ๋Œ€์นญ๋ถ€๋ถ„๋งŒ์ด ๊ทธ ๊ฐ’์— ๊ธฐ์—ฌํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๊ธฐ์–ตํ•˜์žโ—

      ๋”ฐ๋ผ์„œ, ๊ฐ€ ๋Œ€์นญํ–‰๋ ฌ์ธ ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผํ•  ์ˆ˜ ์žˆ์Œ.

    • ๋Œ€์นญํ–‰๋ ฌ์˜ ์„ฑ์งˆ์— ๋”ฐ๋ผ์„œ ๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ.

    • ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ์Œ.

    • ์ด์ฐจํ˜•์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„

    • ๋ฒกํ„ฐ์‹์œผ๋กœ ํ™•์žฅํ•˜๋ฉด

      y๋ฅผ ๋ฒกํ„ฐ๋“ค ์— ์˜ํ•ด ์ •ํฌ๋œ ์ƒˆ๋กœ์šด ์ขŒํ‘œ์ฒด๊ณ„ ๋‚ด์˜ ์ ์œผ๋กœ ํ•ด์„ โ†’ ์ด๋ฅผ ๊ธฐ์ €๋ณ€ํ™˜(change of basis) ๋ผ ํ•จ.

      : standard basis์—์„œ์˜ ์ขŒํ‘œ

      : basis ์—์„œ์˜ ์ขŒํ‘œ

  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ Normalization ์ฆ๋ช…

    • ์˜ ํ™•๋ฅ ๋ฐ€๋„ํ•จ์ˆ˜๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ Jacobian ๋ฅผ ๊ตฌํ•ด์•ผ ํ•จโ—

    • ํ–‰๋ ฌ์‹ ๋Š” ๊ณ ์œ ๊ฐ’์˜ ๊ณฑ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ

    • ๋”ฐ๋ผ์„œ, y์˜ ํ™•๋ฅ ๋ฐ€๋„ํ•จ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

    • y์˜ normalization

  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ ๊ธฐ๋Œ“๊ฐ’

    • ๋‹ค๋ณ€๋Ÿ‰(multivariate) ํ™•๋ฅ ๋ณ€์ˆ˜์˜ ๊ธฐ๋Œ“๊ฐ’

    • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ ๊ธฐ๋Œ“๊ฐ’ ๊ณ„์‚ฐ

      z ๋ถ€๋ถ„์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜๋ฉด,

      (๋ถ€๋ถ„์ด ๋‚จ๊ธฐ๋•Œ๋ฌธ์—)

    • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ ๊ณต๋ถ„์‚ฐ

      ๊ณต๋ถ„์‚ฐ์„ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๋จผ์ € 2์ฐจ ์ ๋ฅ (seconde order moments)๋ฅผ ๊ตฌํ•จ

      ๋Š” DxD ํ–‰๋ ฌ์ด๋ฏ€๋กœ ๋ฅผ ๋กœ ์น˜ํ™˜ํ•˜๋ฉด,

      • ๋Š” ๊ฐœ์˜ ํ–‰๋ ฌ ํ•ฉ์ด๋ฉฐ ๊ทธ ์ค‘ ์— ๊ด€ํ•ด ์˜ํ–‰๋ ฌ์ด ๋จ.

        ( [ ]์•ˆ์˜ ์‹์ด odd function์ด๋ฏ€๋กœ)

        ๋”ฐ๋ผ์„œ,

        : ์ƒ์ˆ˜๋ถ€๋ถ„

        ๋‚˜๋จธ์ง€ ๋ถ€๋ถ„์— ๊ด€ํ•ด์„œ๋Š” odd function์˜ ์„ฑ์งˆ๋กœ ์‚ฌ๋ผ์ง€๋ฉฐ, ๋งˆ์ง€๋ง‰ ์€ ๋ณ„๊ฐœ์˜ ๋ถ€๋ถ„์œผ๋กœ ์ ๋ถ„ ์•ž์œผ๋กœ ๋‚˜์˜ด.

      • ๋”ฐ๋ผ์„œ ์ •๋ฆฌํ•˜๋ฉด, ์ž„.

      • ํ™•๋ฅ ๋ณ€์ˆ˜์˜ ๋ฒกํ„ฐ x๋ฅผ ์œ„ํ•œ ๊ณต๋ถ„์‚ฐ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

        ์œ„์—์„œ ๊ฒŒ์‚ฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜๋ฉด, โ—

์กฐ๊ฑด๋ถ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ(Conditional Gaussian Distribution)

    • ์ง€์ˆ˜๋ถ€์˜ ์ด์ฐจํ˜•์‹์„ ํŒŒํ‹ฐ์…˜์„ ์‚ฌ์šฉํ•ด์„œ ์ „๊ฐœํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ์™„์ „์ œ๊ณฑ์‹(Completing the Square) ๋ฐฉ๋ฒ•

    • ๋ณ€ํ˜•ํ•ด์„œ ํ•จ์ˆ˜g(xa)๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ๋ชฉํ‘œโ—

    ์ด๋•Œ, ์ด์ฐจ ํ˜•์‹์„ ์™„์ „์ œ๊ณฑ์‹ ํ˜•์‹์œผ๋กœ ๋ณ€ํ˜•ํ•˜๋ฉด,

    ์ด๋•Œ, b๋Š” normalizeํ•˜๊ธฐ ์œ„ํ•œ ์ƒ์ˆ˜

  • ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ ์ง€์ˆ˜๋ถ€

    ์ด๋•Œ, ๊ฐ€์šด๋ฐ ๋‘ ๊ฐ’์€ transposeํ•˜๋ฉด ๊ฐ™์€ ๊ฐ’์ด๊ณ , ๋งˆ์ง€๋ง‰ํ•ญ์€ x์™€ ๊ด€๊ณ„์—†์œผ๋ฅด๋ชจ ์ƒ์ˆ˜ ์ทจ๊ธ‰

    ์ด์ฐจํ•ญ์„ ํ†ตํ•ด ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์„ ๊ตฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ผ์ฐจํ•ญ์˜ ๊ณ„์ˆ˜์ธ ํ‰๊ท ๋ฒกํ„ฐ mu๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ์Œโ—

  • ์•ž์„œ ํŒŒํ‹ฐ์…˜ํ•œ ๋ถ€๋ถ„์—์„œ

์ฃผ๋ณ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ(Marginal Gaussian Distributions)

  • ๋ชฉํ‘œโ—

  • ์ „๋žต

    ์ด๋ฅผ ์™„์ „์ œ๊ณฑ์‹์œผ๋กœ ๋ณ€ํ˜•ํ•ด์„œ ์ด์ „์˜ ๋ฐฉ๋ฒ•์ฒ˜๋Ÿผ ๊ณต๋ถ„์‚ฐ๊ณผ ํ‰๊ท ๋ฒกํ„ฐ ๊ตฌํ•  ์ˆ˜ ์žˆ์Œโ—

๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ์œ„ํ•œ ๋ฒ ์ด์ฆˆ ์ •๋ฆฌ(Bayes' Theorem for Gaussian Variables)

  • ์ฃผ์–ด์ง„ ๊ฐ’

    • z์˜ ์ด์ฐจํ•ญ ์ •๋ฆฌ (๊ณต๋ถ„์‚ฐ)

    • z์˜ ์ด์ฐจํ•ญ ์ •๋ฆฌ (ํ‰๊ท ๋ฒกํ„ฐ -> ์ผ์ฐจํ•ญ)

    • ์ฃผ๋ณ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ ๊ฒฐ๊ณผ ๋ฅผ ์ ์šฉํ•˜์—ฌ y์— ๊ด€ํ•œ ์ฃผ๋ณ€ํ™•๋ฅ ๋ถ„ํฌ์˜ ํ‰๊ท ๊ณผ ๊ณต๋ถ„์‚ฐ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์˜ ์ตœ๋Œ€์šฐ๋„(Maximum Likelihood for the Gaussian)

    • ๋กœ๊ทธ ์šฐ๋„ ํ•จ์ˆ˜

        • ์—ญํ–‰๋ ฌ ์—ฐ์‚ฐ์ด ์ผ๋Œ€์ผํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์„ฑ๋ฆฝํ•จโ—

๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ์œ„ํ•œ ๋ฒ ์ด์ง€์•ˆ ์ถ”๋ก (Bayesian Inference for the Gaussian)

    • ๋ถ„์‚ฐ์€ ์ฃผ์–ด์กŒ๋‹ค๊ณ  ๊ฐ€์ •, ๋‹จ๋ณ€๋Ÿ‰ ๊ฐ€์šฐ์‹œ๊ฐ„ ํ™•๋ฅ ๋ณ€์ˆ˜ x์˜ ฮผ๋ฅผ ๋ฒ ์ด์ง€์•ˆ ์ถ”๋ก ์„ ํ†ตํ•ด ๊ตฌํ•œ๋‹ค.

    • ์šฐ๋„ํ•จ์ˆ˜

    • ์‚ฌ์ „ํ™•๋ฅ 

    • ์‚ฌํ›„ํ™•๋ฅ 

      ์•ž์—์„œ ์‚ฌ์šฉํ–ˆ๋˜ ์™„์ „์ œ๊ณฑ์‹ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ณด์ผ ์ˆ˜ ์žˆ์Œโ—

D์ฐจ์›์˜ ํ™•๋ฅ ๋ณ€์ˆ˜ ๋ฒกํ„ฐ x๊ฐ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ํ•˜์ž. x๋ฅผ ๋‘ ๊ทธ๋ฃน์˜ ํ™•๋ฅ ๋ณ€์ˆ˜๋“ค๋กœ ๋‚˜๋ˆด์„๋•Œ, ํ•œ ๊ทธ๋ฃน์ด ์ฃผ์–ด์กŒ์„๋•Œ ๋‚˜๋จธ์ง€ ๊ทธ๋ฃน์˜ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ ๋„ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋ฉฐ, ๊ฐ ๊ทธ๋ฃน์˜ ์ฃผ๋ณ€ํ™•๋ฅ ๋ณ€์ˆ˜ ๋˜ํ•œ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฆ„.

: M๊ฐœ์˜ ์›์†Œ๋ฅผ ๊ฐ€์ง.

ํ‰๊ท ๋ฒกํ„ฐ :

๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ : ์˜ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง„๋‹ค๊ณ  ํ•˜์ž.

๊ณต๋ถ„์‚ฐ์˜ ์—ญํ–‰๋ ฌ : ( ์ •ํ™•๋„ ํ–‰๋ ฌ(precision matrix)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ˆ˜์‹์„ ๊ฐ„ํŽธํ•˜๊ฒŒ ํ•จ)

๋ผ ํ•˜๋ฉฐ, ์ด๋•Œ ์ด ํ•จ์ˆ˜์˜ ์ ๋ถ„์ด 1์ด๊ณ , ฮฑ๋Š” ์™€ ๋…๋ฆฝ์ ์ž„.

ฮฑ๋Š” ์— ๊ด€ํ•ด ์ ๋ถ„ํ–ˆ์œผ๋ฏ€๋กœ, ์˜ ์ฃผ๋ณ€ํ™•๋ฅ .

์ด๋ฏ€๋กœ, โ—

์ฆ‰, ํ•จ์ˆ˜ ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ

โ—

์— ํ•ด๋‹นํ•˜๋Š” ๋ถ€๋ถ„ :

ฮฑ์— ํ•ด๋‹นํ•˜๋Š” ๋ถ€๋ถ„ :

์˜ ์ด์ฐจํ•ญ :

๋”ฐ๋ผ์„œ ๊ณต๋ถ„์‚ฐ ->

์ด๋ฅผ ํ†ตํ•ด ์ผ์ฐจํ•ญ์„ ์ •๋ฆฌํ•ด์„œ ๊ณ„์ˆ˜๋ฅผ ํ†ตํ•ด ํ‰๊ท ๋ฒกํ„ฐ๋ฅผ ๊ตฌํ•˜๋ฉด,

์ด๋•Œ, ฮฒ๋Š” ์— ๊ด€ํ•œ ์ ๋ถ„ ๊ฐ’.

ํŒŒํ‹ฐ์…˜์„ ์œ„ํ•œ ์ด์ฐจํ˜•์‹์„ ๋‹ค์‹œ ์‚ดํŽด๋ณด๋ฉด, ์ „์ฒด 16๊ฐœ ํ•ญ ์ค‘ ๋ฅผ ํฌํ•จํ•œ ํ•ญ์€ 7๊ฐœ์ด๋ฉฐ ๋ฅผ ํฌํ•จํ•œ ํ•ญ์€ 5๊ฐœ

์ •๋ฆฌํ•˜๋ฉด,

๋ฅผ ์™„์ „์ œ๊ณฑ์‹ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค๊ธฐ

์น˜ํ™˜ํ•ด์„œ ๋ฅผ ๋นผ์ฃผ๊ณ  ๋”ํ•ด์ฃผ๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ณ€ํ˜•๋จ.

์ด๋Š” ๊ณต๋ถ„์‚ฐ ์—๋งŒ ์ข…์†๋˜๋ฉฐ, ์—๋Š” ๋…๋ฆฝ์ด๋ฏ€๋กœ ์•ž์„œ ์„ค๋ช…ํ•œ ์˜ ์ง€์ˆ˜๋ถ€์— ์ง‘์ค‘ํ•˜๋ฉด ๋จโ—

๋”ฐ๋ผ์„œ, ์— ๊ด€ํ•ด ์ •๋ฆฌํ•˜๋ฉด,

by Schur complement

์˜ ํ‰๊ท ์€ x์˜ ์„ ํ˜•ํ•จ์ˆ˜

์˜ ๊ณต๋ถ„์‚ฐ์€ x์™€ ๋…๋ฆฝ

๊ตฌํ•  ๊ฐ’ :

๋ฅผ ์œ„ํ•œ ๊ฒฐํ•ฉํ™•๋ฅ ๋ถ„ํฌ (์ด๋ฅผ ํ†ตํ•ด ๊ณต๋ถ„์‚ฐ, ํ‰๊ท ๋ฒกํ„ฐ ๊ณ„์‚ฐ)

์กฐ๊ฑด๋ถ€ ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ ๊ฒฐ๊ณผ ๋ฅผ ์ ์šฉํ•˜์—ฌ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ  ์˜ ํ‰๊ท ๊ณผ ๊ณต๋ถ„์‚ฐ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.

๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ์— ์˜ํ•ด ๋ฐ์ดํ„ฐ ๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ์šฐ๋„๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’(ํ‰๊ท , ๊ณต๋ถ„์‚ฐ) ์ฐพ๊ธฐโ—

์šฐ๋„๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ํ‰๊ท ๋ฒกํ„ฐ

์น˜ํ™˜

์šฐ๋„๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ

์ดํ•ดํ•˜๊ธฐ

MLE๋ฐฉ๋ฒ•์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ํ•˜๋‚˜์˜ ๊ฐ’๋งŒ ๊ตฌํ–ˆ๋‹ค๋ฉด, ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ํ™•๋ฅ ๋ถ„ํฌ ์ž์ฒด๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ์Œโ—

์šฐ๋„ํ•จ์ˆ˜ ์™€ ์‚ฌ์ „ํ™•๋ฅ  ๋ฅผ ํ†ตํ•ด ์˜ ์‚ฌํ›„ํ™•๋ฅ  ๊ตฌํ•˜๊ธฐโ—

https://github.com/sujiny-tech/k-digital-training-AI-dev/blob/main/Machine-Learning-basics/Probability%20Distributions_II.md
๊ทธ๋ฆผ ์ถœ์ฒ˜
image