๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [์ธํ”„๋Ÿฐ] ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
  • ํŒ๋‹ค์Šค ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„๊ณผ ์‹œ๋ฆฌ์ฆˆ ์ดํ•ดํ•˜๊ธฐ - Syntax
  • ํŒ๋‹ค์Šค ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑํ•˜๊ณ  ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ - Syntax
  • ํŒ๋‹ค์Šค ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๋น„๊ต์—ฐ์‚ฐ์ž๋กœ ์ƒ‰์ธํ•˜๊ธฐ - Subset Observations(Rows)
  • Logic in Python - Subset Observations(Rows)
  • head, tail, sample๋กœ ๋ฐ์ดํ„ฐ ๋ฏธ๋ฆฌ๋ณด๊ธฐ - Subset Observations(Rows)
  • iloc, nlargest, nsmallest๋กœ ๋ฐ์ดํ„ฐ ์ƒ‰์ธํ•˜๊ธฐ - Subset Observations(Rows)

Was this helpful?

  1. 2021 TIL
  2. JAN

1 Fri

TIL

Previous2 SatNextDEC

Last updated 4 years ago

Was this helpful?

[์ธํ”„๋Ÿฐ] ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ

AI ์Šค์ฟจ ์ฒซ ํ”„๋กœ์ ํŠธ๋ฅผ ์œ„ํ•ด Pandas๋ฅผ ๋” ๊ณต๋ถ€ํ•ด๋ณด๊ณ  ์‹ถ์–ด์กŒ๋‹ค. ๋˜, ์ถ”ํ›„์—๋„ Pandas๋ฅผ ์ด์šฉํ•œ ์‹œ๊ฐํ™”๋ฅผ ์‚ฌ์šฉํ•  ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ด์„œ ์ด์ฐธ์— ๋ฐฐ์›Œ๋‘๋ฉด ์ข‹๊ฒ ๋‹ค ์ƒ๊ฐํ–ˆ๋‹ค. ํ™”์ดํŒ…!

ํŒ๋‹ค์Šค ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„๊ณผ ์‹œ๋ฆฌ์ฆˆ ์ดํ•ดํ•˜๊ธฐ - Syntax

import pandas as pd
df = pd.DataFrame(
        {"a" : [4, 5, 6],
        "b" : [7, 8, 9],
        "c" : [10, 11, 12]},
            index = [1, 2, 3])

์ด ๋•Œ ํ•œ ํ–‰์„ Series๋ผ๊ณ  ํ•œ๋‹ค. index์˜ default๋Š” [0, 1, ,,,]

๊ธฐ๋ณธ์ ์ธ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์กฐ์ž‘

df

a

b

c

1

4

7

10

2

5

8

11

3

6

9

12

ํŠน์ • ์ปฌ๋Ÿผ์„ ๊ฐ€์ง€๊ณ  ์™€๋ณด์ž!

df["a"]
1    4
2    5
3    6
Name: a, dtype: int64

์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ปฌ๋Ÿผ์„ ๋ณด๊ธฐ!

df[["a", "b"]]

a

b

1

4

7

2

5

8

3

6

9

n๋ฒˆ ์ธ๋ฑ์Šค์˜ ํ–‰ ๋ณด๊ธฐ

df.loc[3]
a     6
b     9
c    12
Name: 3, dtype: int64

์—ฌ๋Ÿฌ ์ธ๋ฑ์Šค์˜ ํ–‰ ๋ณด๊ธฐ

df.loc[[1,2]]

a

b

c

1

4

7

10

2

5

8

11

ํŠน์ • ์ธ๋ฑ์Šค์˜ ํ–‰๊ณผ ์—ด ๋ณด๊ธฐ ํ–‰-์—ด ์ˆœ์œผ๋กœ ์ž‘์„ฑ

df.loc[1, "b"]
7
df.loc[[1, 2], ["a","b"]]

a

b

1

4

7

2

5

8

ํŒ๋‹ค์Šค ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑํ•˜๊ณ  ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ - Syntax

kernel - Restart & ClearOutput ์„ ๋ˆ„๋ฅด๋ฉด ์‹คํ–‰๊ฒฐ๊ณผ๊ฐ€ ๋ชจ๋‘ ์ง€์›Œ์ง„๋‹ค! ๋ณต์Šตํ•  ์ˆ˜ ์žˆ์Œ!

df = pd.DataFrame(
        [[4, 7, 10],
        [5, 8, 11],
        [6, 9, 12]],
        index=[1, 2, 3],
        columns=['a', 'b', 'c'])
df

a

b

c

1

4

7

10

2

5

8

11

3

6

9

12

๋‘ ๊ฐœ์˜ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„

pd.DataFrame(  
        {"a" : [4, 5, 6],  
        "b" : [7, 8, 9],  
        "c" : [10, 11, 12]},  
            index = [1, 2, 3])    
df = pd.DataFrame(  
        [[4, 7, 10],  
        [5, 8, 11],  
        [6, 9, 12]],  
        index=[1, 2, 3],  
        columns=['a', 'b', 'c'])  

๋Š” ๋™์ผํ•˜๋‹ค.

Index ์ง€์ • - ํŠœํ”Œ ์ž๋ฃŒํ˜• ์‚ฌ์šฉ ์—ฌ๋Ÿฌ๊ฐœ์˜ ์ธ๋ฑ์Šค๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค.

df = pd.DataFrame(
        {"a" : [4 ,5, 6],
        "b" : [7, 8, 9],
        "c" : [10, 11, 12]},
        index = pd.MultiIndex.from_tuples(
        [('d',1),('d',2),('e',2)],
        names=['n','v']))
df

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

ํŒ๋‹ค์Šค ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๋น„๊ต์—ฐ์‚ฐ์ž๋กœ ์ƒ‰์ธํ•˜๊ธฐ - Subset Observations(Rows)

ํŠน์ • ์—ด์—์„œ ์ƒ‰์ธ(ํ•„ํ„ฐ๋ง)

df[df.a > 7]

a

b

c

n

v

df[df.a < 7]

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

df.b > 7
n  v
d  1    False
   2     True
e  2     True
Name: b, dtype: bool

๋‹ค์Œ 2๊ฐœ์˜ ์ฝ”๋“œ๋Š” ๋™์ผํ•˜๋‹ค.

df[df.b > 7]

a

b

c

n

v

d

2

5

8

11

e

2

6

9

12

df[df['b'] > 7]

a

b

c

n

v

d

2

5

8

11

e

2

6

9

12

df.OO ์™€ df['OO']๋Š” ๊ฐ™๋‹ค ์ด ๋•Œ, ๋Œ€์†Œ๋ฌธ์ž์— ์œ ์˜ ์ฐจ์ด์ ์€ dot์„ ์‚ฌ์šฉํ•˜๋ฉด ํŠน์ˆ˜๋ฌธ์ž๋‚˜ ํ•œ๊ธ€์ด ํฌํ•จ๋˜์žˆ๋Š” ์ด๋ฆ„์—์„œ ์˜ค๋ฅ˜๊ฐ€ ๋‚  ์ˆ˜ ์žˆ๋‹ค.

df = pd.DataFrame(
        {"a" : [4 ,5, 6, 6],
        "b" : [7, 8, 9, 9],
        "c" : [10, 11, 12, 12]},
        index = pd.MultiIndex.from_tuples(
        [('d',1),('d',2),('e',2), ('e', 3)],
        names=['n','v']))
df

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

3

6

9

12

df.drop_duplicates() : ์ค‘๋ณต์„ ์—†์• ์ฃผ๋Š” ๋ฉ”์„œ๋“œ

df.drop_duplicates()

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

๊ทธ๋Ÿฌ๋‚˜ ์ด ๋•Œ ๋‹ค์‹œ df๋ฅผ ์ถœ๋ ฅํ•ด๋„ ๋™์ผํ•˜๋‹ค.

df

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

3

6

9

12

์ด ๋•Œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์˜ต์…˜ inplace๋ฅผ True๋กœ ๋ณ€๊ฒฝํ•ด์ฃผ๋ฉด ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ pandas์—์„œ๋Š” inplace ์‚ฌ์šฉ์„ ๊ถŒ์žฅํ•˜์ง€๋Š” ์•Š๋Š”๋‹ค.

df.drop_duplicates(inplace=True)
df

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

๋”ฐ๋ผ์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์„ ์ถ”์ฒœํ•œ๋‹ค.

df2 = df.drop_duplicates()
df2

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ž…๋ ฅํ•˜๋ฉด ํ•ด๋‹น ํ•จ์ˆ˜์— ๋Œ€ํ•œ ์„ค๋ช…์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

df.drop_duplicates?
'''
Signature:
df.drop_duplicates(
    subset: Union[Hashable, Sequence[Hashable], NoneType] = None,
    keep: Union[str, bool] = 'first',
    inplace: bool = False,
    ignore_index: bool = False,
) -> Union[ForwardRef('DataFrame'), NoneType]
'''
df = pd.DataFrame(
        {"a" : [4 ,5, 6, 6],
        "b" : [7, 8, 9, 9],
        "c" : [10, 11, 12, 12]},
        index = pd.MultiIndex.from_tuples(
        [('d',1),('d',2),('e',2), ('e', 3)],
        names=['n','v']))

์ค‘๋ณต๋œ ํ–‰์„ ์ œ๊ฑฐํ•  ๋•Œ ๋งˆ์ง€๋ง‰ ๋ถ€๋ถ„์ด ์œ ์ง€๋˜๋„๋ก ํ•  ์ˆ˜ ์žˆ๋‹ค

df.drop_duplicates(keep = 'last')
df

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

3

6

9

12

์ •๋ฆฌ : drop_duplicates๋Š” ์ค‘๋ณต๋œ ํ–‰์„ ์ œ๊ฑฐํ•  ๋•Œ ์‚ฌ์šฉํ•œ๋‹ค.

Logic in Python - Subset Observations(Rows)

df

a

b

c

n

v

d

1

4

7

10

2

5

8

11

e

2

6

9

12

3

6

9

12

df[df.b != 7]

a

b

c

n

v

d

2

5

8

11

e

2

6

9

12

3

6

9

12

isin() : ํ–‰์— ๋Œ€ํ•œ ์ธ์ž์˜ ์กด์žฌ ์œ ๋ฌด

df.column.isin?
Object `df.column.isin` not found.

column => ํŠน์ • ์ปฌ๋Ÿผ์˜ ์ด๋ฆ„์œผ๋กœ ์ •์˜ํ•ด์ค˜์•ผ ํ•จ ๋˜ isin์˜ ์ธ์ž๋Š” ๋ฆฌ์ŠคํŠธ ํ˜•ํƒœ์—ฌ์•ผ ํ•œ๋‹ค.

df.a.isin([5])
n  v
d  1    False
   2     True
e  2    False
   3    False
Name: a, dtype: bool

isnull() : null๊ฐ’์˜ ์กด์žฌ ์œ ๋ฌด ํ™•์ธ

import numpy as np
df = pd.DataFrame(
        {"a" : [4 ,5, 6, 6, np.nan],
        "b" : [7, 8, np.nan, 9, 9],
        "c" : [10, 11, 12, np.nan, 12]},
        index = pd.MultiIndex.from_tuples(
        [('d',1),('d',2),('e',2), ('e', 3), ('e', 4)],
        names=['n','v']))
df

a

b

c

n

v

d

1

4.0

7.0

10.0

2

5.0

8.0

11.0

e

2

6.0

NaN

12.0

3

6.0

9.0

NaN

4

NaN

9.0

12.0

pd.isnull(df)

a

b

c

n

v

d

1

False

False

False

2

False

False

False

e

2

False

True

False

3

False

False

True

4

True

False

False

df['a'].isnull()
n  v
d  1    False
   2    False
e  2    False
   3    False
   4     True
Name: a, dtype: bool
df['b'].isnull().sum()
1

notnull : null์ด ์•„๋‹Œ ๊ฐ’์˜ ์กด์žฌ ์œ ๋ฌด

pd.notnull(df)

a

b

c

n

v

d

1

True

True

True

2

True

True

True

e

2

True

False

True

3

True

True

False

4

False

True

True

df.notnull()

a

b

c

n

v

d

1

True

True

True

2

True

True

True

e

2

True

False

True

3

True

True

False

4

False

True

True

์œ„์— ์žˆ๋Š” ๋‘ ์ฝ”๋“œ๋Š” ๋™์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค

df.a.notnull()
n  v
d  1     True
   2     True
e  2     True
   3     True
   4    False
Name: a, dtype: bool

and, or, not, xor, any, all

๊ฐ๊ฐ &, |, ~, ^, df.any(), df.all()์— ํ•ด๋‹นํ•œ๋‹ค

df.a.isnull()
n  v
d  1    False
   2    False
e  2    False
   3    False
   4     True
Name: a, dtype: bool
~df.a.isnull()
n  v
d  1     True
   2     True
e  2     True
   3     True
   4    False
Name: a, dtype: bool
df

a

b

c

n

v

d

1

4.0

7.0

10.0

2

5.0

8.0

11.0

e

2

6.0

NaN

12.0

3

6.0

9.0

NaN

4

NaN

9.0

12.0

df[(df.b == 7) & (df.a == 5)]

a

b

c

n

v

df[(df.b == 7) & (df.a == 4)]

a

b

c

n

v

d

1

4.0

7.0

10.0

head, tail, sample๋กœ ๋ฐ์ดํ„ฐ ๋ฏธ๋ฆฌ๋ณด๊ธฐ - Subset Observations(Rows)

df.head() : ์œ„์—์„œ n๊ฐœ ์ถœ๋ ฅ

default๋Š” 5๊ฐœ์ด๋‹ค

df.head(3)

a

b

c

n

v

d

1

4.0

7.0

10.0

2

5.0

8.0

11.0

e

2

6.0

NaN

12.0

df.tail() : ์•„๋ž˜์—์„œ n๊ฐœ ์ถœ๋ ฅ

df.tail(4)

a

b

c

n

v

d

2

5.0

8.0

11.0

e

2

6.0

NaN

12.0

3

6.0

9.0

NaN

4

NaN

9.0

12.0

df.sample(frac=0.5)

df.sample(frac = m)

์ด ๋•Œ 0 <= m <= 1 ์ด๋‹ค. ํ•ด๋‹น ๋น„์œจ๋งŒํผ ๋žœ๋คํ•˜๊ฒŒ ๊ฐ€์ ธ์˜จ๋‹ค. ๋”ฐ๋ผ์„œ ์ธ๋ฑ์Šค๊ฐ€ ๋’ค์„ž์ž„

df.sample(frac=0.5)

a

b

c

n

v

e

3

6.0

9.0

NaN

d

2

5.0

8.0

11.0

df.sample(frac=0.5)

a

b

c

n

v

e

4

NaN

9.0

12.0

d

1

4.0

7.0

10.0

df.sample(frac=1)

a

b

c

n

v

e

2

6.0

NaN

12.0

d

2

5.0

8.0

11.0

e

4

NaN

9.0

12.0

3

6.0

9.0

NaN

d

1

4.0

7.0

10.0

df.sample(n=10)

df.sample(n = m)

์ด ๋•Œ m์€ ์ž์—ฐ์ˆ˜์ด๋‹ค. (๋‹จ ์ „์ฒด ๊ฐœ์ˆ˜๋ณด๋‹ค ํด ์ˆ˜ ์—†๋‹ค.)

df.sample(n = 5)

a

b

c

n

v

e

4

NaN

9.0

12.0

d

2

5.0

8.0

11.0

e

3

6.0

9.0

NaN

2

6.0

NaN

12.0

d

1

4.0

7.0

10.0

df.sample(n = 3)

a

b

c

n

v

d

2

5.0

8.0

11.0

e

3

6.0

9.0

NaN

4

NaN

9.0

12.0

๋น„์œจ๋กœ ๊ตฌํ•  ๋•Œ์—๋Š” frac, ๊ฐœ์ˆ˜๋กœ ๊ตฌํ•  ๋•Œ์—๋Š” n

iloc, nlargest, nsmallest๋กœ ๋ฐ์ดํ„ฐ ์ƒ‰์ธํ•˜๊ธฐ - Subset Observations(Rows)

df.iloc[:]

ํ•ด๋‹น ์ธ๋ฑ์Šค๋งŒํผ์˜ ๋ฒ”์œ„๋ฅผ ํ–‰์„ ๊ธฐ์ค€์œผ๋กœ ์ƒ‰์ธํ•œ๋‹ค.

df.iloc[:]

a

b

c

n

v

d

1

4.0

7.0

10.0

2

5.0

8.0

11.0

e

2

6.0

NaN

12.0

3

6.0

9.0

NaN

4

NaN

9.0

12.0

df.iloc[1:]

a

b

c

n

v

d

2

5.0

8.0

11.0

e

2

6.0

NaN

12.0

3

6.0

9.0

NaN

4

NaN

9.0

12.0

df.iloc[3:4]

a

b

c

n

v

e

3

6.0

9.0

NaN

df.nlargest(n, 'value')

ํฌ๊ธฐ ์ˆœ์œผ๋กœ value ์—ด์— ๋Œ€ํ•ด์„œ n๊ฐœ ๋งŒํผ์˜ ํ–‰์„ ์ถœ๋ ฅํ•œ๋‹ค

df = pd.DataFrame(
        {"a" : [1, 10, 8, 11, -1],
         "b" : list('abcde'),
         "c" : [1.0, 2.0, np.nan, 3.0, 4.0]})
df

a

b

c

0

1

a

1.0

1

10

b

2.0

2

8

c

NaN

3

11

d

3.0

4

-1

e

4.0

df.nlargest(3, 'a')

a

b

c

3

11

d

3.0

1

10

b

2.0

2

8

c

NaN

# df.nlargest(1, 'b')
# b๋Š” ์ˆซ์ž๊ฐ€ ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์— ํƒ€์ž…์—๋Ÿฌ ๋ฐœ์ƒ
df.nlargest(5, 'c')
# NaN์€ ์ˆซ์ž๊ฐ€ ์•„๋‹ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ถœ๋ ฅ๋˜์ง€ ์•Š๋Š”๋‹ค

a

b

c

4

-1

e

4.0

3

11

d

3.0

1

10

b

2.0

0

1

a

1.0

df.nsmallest(n, 'value')

ํฌ๊ธฐ ์ˆœ์œผ๋กœ value ์—ด์— ๋Œ€ํ•ด์„œ n๊ฐœ ๋งŒํผ์˜ ํ–‰์„ ์ถœ๋ ฅํ•œ๋‹ค

df.nsmallest(1, 'a')

a

b

c

4

-1

e

4.0

df.nsmallest(4, 'a')

a

b

c

4

-1

e

4.0

0

1

a

1.0

2

8

c

NaN

1

10

b

2.0

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf