๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ] EDA Project
  • Jupyter Notebook์œผ๋กœ csv ๋ถ„์„
  • AWS ์—ฐ๋™
  • ์™„์„ฑ๋œ ์›นํŽ˜์ด์ง€

Was this helpful?

  1. 2021 TIL
  2. JAN

6 Wed

TIL

Previous7 ThuNext5 Tue

Last updated 4 years ago

Was this helpful?

[ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค AI ์Šค์ฟจ 1๊ธฐ] EDA Project

Jupyter Notebook์œผ๋กœ csv ๋ถ„์„

kaggle์—์„œ ์ฐพ์€ korean health๋กœ ๋ฐ์ดํ„ฐ ์ฃผ์ œ๋ฅผ ์„ ํƒํ–ˆ๋‹ค. ํก์—ฐ์ด๋‚˜ ์Œ์ฃผ, ๊ฐ€์กฑ๋ ฅ๋“ฑ์œผ๋กœ ์งˆ๋ณ‘์„ ํŒŒ์•…ํ•˜๋Š” ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ๋ณด์—ฌ์„œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ–ˆ๋‹ค.

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import os, glob
mpl.rcParams['axes.unicode_minus'] = False
healths = [pd.read_csv(os.path.join("archive", "follow_0"+str(i)+"_data.csv")) for i in range(1, 6)]
h = pd.DataFrame()
for name in healths[0].columns:
    h[name[4:]] = healths[0][name]

for idx in range(1, 5):
    other = pd.DataFrame()
    for name in healths[idx].columns:
        other[name[4:]] = healths[idx][name]
    h = pd.concat([h, other], axis=0, ignore_index=True)
h

ID

DATA_CLASS

EDATE

SEX

AGE

EDU

MARRY

DRINK

DRDU

TAKFQ

...

DBP

HBA1C

GLU0

CREATININE

AST

ALT

TCHL

HDL

TG

INS0

0

K_FOLLOW_0001

F05

200412

1.0

56

1.0

2

3

4.0

0

...

80

5.6

82

0.7

30

38

154

35

126

6.7

1

K_FOLLOW_0002

F19

200401

1.0

40

3.0

2

3

4.0

0

...

118

5.5

130

1.1

46

75

214

44

169

4.3

2

K_FOLLOW_0003

F05

200309

1.0

52

2.0

2

2

3.0

0

...

90

5.2

83

0.9

29

45

130

27

134

7.9

3

K_FOLLOW_0004

F05

200504

2.0

60

2.0

2

1

77777.0

0

...

90

5.6

89

0.6

35

34

182

47

123

12.6

4

K_FOLLOW_0005

F19

200402

1.0

49

3.0

2

3

4.0

0

...

79

6.9

95

1.0

52

33

203

36

277

2.7

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

4530

K_FOLLOW_0993

F05

201505

NaN

74

NaN

3

2

NaN

0

...

63

6.2

111

0.7

25

22

173

40

79

29.1

4531

K_FOLLOW_0995

F19

201412

NaN

55

NaN

2

3

NaN

0

...

69

5.3

94

1.0

27

23

221

63

134

5.8

4532

K_FOLLOW_0996

F05

201605

NaN

75

NaN

2

1

NaN

0

...

76

5.7

111

1.5

26

18

199

34

129

10.9

4533

K_FOLLOW_0998

F19

201410

NaN

52

NaN

2

3

NaN

0

...

76

4.9

93

0.8

22

17

269

41

141

11.8

4534

K_FOLLOW_1000

F19

201410

NaN

56

NaN

2

1

NaN

0

...

71

6.0

84

0.8

22

28

246

37

282

17.0

4535 rows ร— 64 columns

# HTN : Hypertension, ๊ณ ํ˜ˆ์••
# DM : diabetes, ๋‹น๋‡จ
# LIP : Hyperlipidemia, ๊ณ ์ง€์งˆํ˜ˆ์ฆ
h.columns
Index(['ID', 'DATA_CLASS', 'EDATE', 'SEX', 'AGE', 'EDU', 'MARRY', 'DRINK',
       'DRDU', 'TAKFQ', 'TAKAM', 'RICEFQ', 'RICEAM', 'WINEFQ', 'WINEAM',
       'SOJUFQ', 'SOJUAM', 'BEERFQ', 'BEERAM', 'HLIQFQ', 'HLIQAM', 'SMOKE',
       'SMAG', 'SMDU', 'SMAM', 'PSM', 'EXER', 'HTN', 'HTNAG', 'DM', 'DMAG',
       'LIP', 'LIPAG', 'FMFHT', 'FMFHTAG', 'FMMHT', 'FMMHTAG', 'FMFDM',
       'FMFDMAG', 'FMMDM', 'FMMDMAG', 'MNSAG', 'PREG', 'FPREGAG', 'CHILD',
       'FLABAG', 'PMYN_C', 'PMAG_C', 'HEIGHT', 'WEIGHT', 'WAIST', 'HIP',
       'PULSE', 'SBP', 'DBP', 'HBA1C', 'GLU0', 'CREATININE', 'AST', 'ALT',
       'TCHL', 'HDL', 'TG', 'INS0'],
      dtype='object')
concern_column=["ID", "DATA_CLASS", 'EDATE', 'SEX', 'AGE', 'EDU' ,'MARRY', 'DRINK', 'DRDU', 'SMOKE', 'SMDU', 'EXER', 'HTN', 'DM', 'LIP',
                'WEIGHT', 'HEIGHT']
df = h[concern_column]
df

ID

DATA_CLASS

EDATE

SEX

AGE

EDU

MARRY

DRINK

DRDU

SMOKE

SMDU

EXER

HTN

DM

LIP

WEIGHT

HEIGHT

0

K_FOLLOW_0001

F05

200412

1.0

56

1.0

2

3

4.0

3

40.0

1

1

1

1

50

159

1

K_FOLLOW_0002

F19

200401

1.0

40

3.0

2

3

4.0

2

20.0

1

1

1

1

94

169

2

K_FOLLOW_0003

F05

200309

1.0

52

2.0

2

2

3.0

2

15.0

1

2

1

1

63

165

3

K_FOLLOW_0004

F05

200504

2.0

60

2.0

2

1

77777.0

1

77777.0

1

1

1

1

70

165

4

K_FOLLOW_0005

F19

200402

1.0

49

3.0

2

3

4.0

3

20.0

1

1

1

1

69

166

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

4530

K_FOLLOW_0993

F05

201505

NaN

74

NaN

3

2

NaN

2

15.0

1

1

1

1

53

154

4531

K_FOLLOW_0995

F19

201412

NaN

55

NaN

2

3

NaN

2

17.0

2

1

1

1

67

169

4532

K_FOLLOW_0996

F05

201605

NaN

75

NaN

2

1

NaN

3

52.0

1

1

1

1

57

161

4533

K_FOLLOW_0998

F19

201410

NaN

52

NaN

2

3

NaN

3

28.0

1

1

1

1

76

178

4534

K_FOLLOW_1000

F19

201410

NaN

56

NaN

2

1

NaN

1

77777.0

1

1

1

1

72

153

4535 rows ร— 17 columns

df.describe()

EDATE

SEX

AGE

EDU

MARRY

DRINK

DRDU

SMOKE

SMDU

EXER

HTN

DM

LIP

WEIGHT

HEIGHT

count

4535.000000

1000.000000

4535.000000

1000.000000

4535.000000

4535.000000

1000.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

mean

200871.500331

1.558000

58.764057

702.283000

5272.043219

332.727233

41478.984000

332.229327

54322.767343

199.826461

155.441235

155.384344

155.389636

216.592282

313.328776

std

387.311708

0.496873

9.670914

8341.161821

18212.583546

5742.123427

39837.974579

5742.152079

36072.751235

4450.807540

3926.121652

3926.123883

3926.123675

3923.730540

3919.923804

min

200301.000000

1.000000

40.000000

1.000000

1.000000

1.000000

1.000000

1.000000

0.100000

1.000000

1.000000

1.000000

1.000000

36.000000

132.000000

25%

200509.000000

1.000000

51.000000

1.000000

2.000000

1.000000

4.000000

1.000000

36.000000

1.000000

1.000000

1.000000

1.000000

55.000000

152.000000

50%

200811.000000

2.000000

58.000000

2.000000

2.000000

2.000000

77777.000000

1.000000

77777.000000

1.000000

1.000000

1.000000

1.000000

61.000000

159.000000

75%

201207.000000

2.000000

66.000000

3.000000

2.000000

3.000000

77777.000000

2.000000

77777.000000

2.000000

1.000000

1.000000

1.000000

69.000000

166.000000

max

201702.000000

2.000000

86.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

99999.000000

update_lists = ['EDU', 'MARRY', 'DRINK', 'DRDU', 'SMOKE', 'SMDU', 'EXER', 'HTN', 'DM', 'LIP', 'WEIGHT', 'HEIGHT']
for u_list in update_lists:
    df[u_list] = df[u_list].replace(99999.0, df[u_list].quantile(0.25))
    df[u_list] = df[u_list].replace(77777.0, df[u_list].quantile(0.30))
    df[u_list] = df[u_list].replace(66666.0, df[u_list].quantile(0.35))
df.describe()

EDATE

SEX

AGE

EDU

MARRY

DRINK

DRDU

SMOKE

SMDU

EXER

HTN

DM

LIP

WEIGHT

HEIGHT

count

4535.000000

1000.000000

4535.000000

1000.000000

4535.000000

4535.000000

1000.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

mean

200871.500331

1.558000

58.764057

2.297000

2.130320

1.973098

3.713000

1.475193

40.015854

1.373980

1.089305

1.032415

1.037707

62.323705

159.209923

std

387.311708

0.496873

9.670914

1.294011

0.454352

0.980705

0.723294

0.755944

12.677512

0.483912

0.285216

0.177118

0.190507

10.306152

9.177130

min

200301.000000

1.000000

40.000000

1.000000

1.000000

1.000000

1.000000

1.000000

0.100000

1.000000

1.000000

1.000000

1.000000

36.000000

132.000000

25%

200509.000000

1.000000

51.000000

1.000000

2.000000

1.000000

4.000000

1.000000

36.000000

1.000000

1.000000

1.000000

1.000000

55.000000

152.000000

50%

200811.000000

2.000000

58.000000

2.000000

2.000000

2.000000

4.000000

1.000000

47.000000

1.000000

1.000000

1.000000

1.000000

61.000000

159.000000

75%

201207.000000

2.000000

66.000000

3.000000

2.000000

3.000000

4.000000

2.000000

47.000000

2.000000

1.000000

1.000000

1.000000

69.000000

166.000000

max

201702.000000

2.000000

86.000000

6.000000

6.000000

3.000000

4.000000

3.000000

61.000000

2.000000

2.000000

2.000000

2.000000

110.000000

186.000000

df['BMI'] = df['WEIGHT'] * 10000 / (df['HEIGHT'] ** 2)
df.describe()
c:\users\32154049\appdata\local\programs\python\python37\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  """Entry point for launching an IPython kernel.

EDATE

SEX

AGE

EDU

MARRY

DRINK

DRDU

SMOKE

SMDU

EXER

HTN

DM

LIP

WEIGHT

HEIGHT

BMI

count

4535.000000

1000.000000

4535.000000

1000.000000

4535.000000

4535.000000

1000.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

4535.000000

mean

200871.500331

1.558000

58.764057

2.297000

2.130320

1.973098

3.713000

1.475193

40.015854

1.373980

1.089305

1.032415

1.037707

62.323705

159.209923

24.520747

std

387.311708

0.496873

9.670914

1.294011

0.454352

0.980705

0.723294

0.755944

12.677512

0.483912

0.285216

0.177118

0.190507

10.306152

9.177130

3.025413

min

200301.000000

1.000000

40.000000

1.000000

1.000000

1.000000

1.000000

1.000000

0.100000

1.000000

1.000000

1.000000

1.000000

36.000000

132.000000

16.649324

25%

200509.000000

1.000000

51.000000

1.000000

2.000000

1.000000

4.000000

1.000000

36.000000

1.000000

1.000000

1.000000

1.000000

55.000000

152.000000

22.460034

50%

200811.000000

2.000000

58.000000

2.000000

2.000000

2.000000

4.000000

1.000000

47.000000

1.000000

1.000000

1.000000

1.000000

61.000000

159.000000

24.341758

75%

201207.000000

2.000000

66.000000

3.000000

2.000000

3.000000

4.000000

2.000000

47.000000

2.000000

1.000000

1.000000

1.000000

69.000000

166.000000

26.374068

max

201702.000000

2.000000

86.000000

6.000000

6.000000

3.000000

4.000000

3.000000

61.000000

2.000000

2.000000

2.000000

2.000000

110.000000

186.000000

40.898275

sex = df['SEX'].value_counts()
sex
2.0    558
1.0    442
Name: SEX, dtype: int64
sns.countplot(x='SEX', data=df, palette="Set3").set_xticklabels(['Male', 'Female'])
[Text(0,0,'Male'), Text(0,0,'Female')]
age = (df['AGE'] // 10).value_counts().sort_index()
age
4     916
5    1500
6    1420
7     665
8      34
Name: AGE, dtype: int64
age.plot.pie(labels=['40s', '50s', '60s', '70s', '80s'], figsize=(6,6), autopct='%2.2f%%')
<matplotlib.axes._subplots.AxesSubplot at 0x26e3b729248>
df.corr()

EDATE

SEX

AGE

EDU

MARRY

DRINK

DRDU

SMOKE

SMDU

EXER

HTN

DM

LIP

WEIGHT

HEIGHT

BMI

EDATE

1.000000

0.008615

0.366888

-0.031471

0.045600

-0.020274

0.117783

-0.044139

0.061567

0.078942

-0.169604

-0.089983

-0.011097

-0.028595

-0.019003

-0.018632

SEX

0.008615

1.000000

0.095919

-0.402801

0.105127

-0.508050

-0.021876

-0.711529

0.625547

-0.024109

0.047184

-0.024149

-0.027353

-0.481835

-0.754677

0.056700

AGE

0.366888

0.095919

1.000000

-0.413910

0.179970

-0.201568

0.209637

-0.135777

0.220699

-0.086049

0.043383

0.041549

0.035596

-0.218719

-0.310716

0.004590

EDU

-0.031471

-0.402801

-0.413910

1.000000

-0.035169

0.265857

-0.071401

0.269781

-0.358991

0.185560

-0.073431

-0.014515

0.036760

0.277198

0.466428

-0.066283

MARRY

0.045600

0.105127

0.179970

-0.035169

1.000000

-0.044103

-0.000401

-0.065396

0.056706

-0.010054

-0.004731

-0.000430

0.014563

-0.099021

-0.152237

0.009060

DRINK

-0.020274

-0.508050

-0.201568

0.265857

-0.044103

1.000000

-0.362018

0.378713

-0.329277

0.061637

-0.019007

-0.010216

-0.031165

0.299947

0.425832

-0.001447

DRDU

0.117783

-0.021876

0.209637

-0.071401

-0.000401

-0.362018

1.000000

0.028359

0.038567

-0.002015

0.117477

0.081809

0.055598

-0.028925

-0.034134

-0.005400

SMOKE

-0.044139

-0.711529

-0.135777

0.269781

-0.065396

0.378713

0.028359

1.000000

-0.701374

-0.024676

-0.009670

0.018362

-0.034088

0.294119

0.502751

-0.079150

SMDU

0.061567

0.625547

0.220699

-0.358991

0.056706

-0.329277

0.038567

-0.701374

1.000000

-0.053050

0.022635

-0.002213

0.020400

-0.331867

-0.464291

0.001259

EXER

0.078942

-0.024109

-0.086049

0.185560

-0.010054

0.061637

-0.002015

-0.024676

-0.053050

1.000000

-0.045482

0.020650

0.026435

0.153191

0.151872

0.059174

HTN

-0.169604

0.047184

0.043383

-0.073431

-0.004731

-0.019007

0.117477

-0.009670

0.022635

-0.045482

1.000000

0.134787

0.088200

0.060619

-0.038763

0.119192

DM

-0.089983

-0.024149

0.041549

-0.014515

-0.000430

-0.010216

0.081809

0.018362

-0.002213

0.020650

0.134787

1.000000

0.087962

0.065900

0.003683

0.083178

LIP

-0.011097

-0.027353

0.035596

0.036760

0.014563

-0.031165

0.055598

-0.034088

0.020400

0.026435

0.088200

0.087962

1.000000

-0.002062

-0.039725

0.033544

WEIGHT

-0.028595

-0.481835

-0.218719

0.277198

-0.099021

0.299947

-0.028925

0.294119

-0.331867

0.153191

0.060619

0.065900

-0.002062

1.000000

0.671009

0.705170

HEIGHT

-0.019003

-0.754677

-0.310716

0.466428

-0.152237

0.425832

-0.034134

0.502751

-0.464291

0.151872

-0.038763

0.003683

-0.039725

0.671009

1.000000

-0.045135

BMI

-0.018632

0.056700

0.004590

-0.066283

0.009060

-0.001447

-0.005400

-0.079150

0.001259

0.059174

0.119192

0.083178

0.033544

0.705170

-0.045135

1.000000

sns.heatmap(df.corr())
<matplotlib.axes._subplots.AxesSubplot at 0x26e3b76ffc8>
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) # ๊ฐ€๋กœ 1๊ฐœ, ์„ธ๋กœ 1๊ฐœ, figsize
sns.kdeplot(x=df['EDU'], ax=ax)
sns.kdeplot(x=df[df.HTN == 2]['EDU'], ax=ax)
sns.kdeplot(x=df[df.DM == 2]['EDU'], ax=ax)
sns.kdeplot(x=df[df.LIP == 2]['EDU'], ax=ax)

plt.legend(['EDU', 'HTN', 'DM', 'LIP'])
plt.show()
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) # ๊ฐ€๋กœ 1๊ฐœ, ์„ธ๋กœ 1๊ฐœ, figsize
sns.kdeplot(x=df['SMOKE'], ax=ax)
sns.kdeplot(x=df[df.HTN == 2]['SMOKE'], ax=ax)
sns.kdeplot(x=df[df.DM == 2]['SMOKE'], ax=ax)
sns.kdeplot(x=df[df.LIP == 2]['SMOKE'], ax=ax)

plt.legend(['SMOKE', 'HTN', 'DM', 'LIP'])
plt.show()
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) # ๊ฐ€๋กœ 1๊ฐœ, ์„ธ๋กœ 1๊ฐœ, figsize
sns.kdeplot(x=df['DRINK'], ax=ax)
sns.kdeplot(x=df[df.HTN == 2]['DRINK'], ax=ax)
sns.kdeplot(x=df[df.DM == 2]['DRINK'], ax=ax)
sns.kdeplot(x=df[df.LIP == 2]['DRINK'], ax=ax)

plt.legend(['DRINK', 'HTN', 'DM', 'LIP'])
plt.show()
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) # ๊ฐ€๋กœ 1๊ฐœ, ์„ธ๋กœ 1๊ฐœ, figsize
sns.kdeplot(x=df[df.HTN == 2]['AGE'], ax=ax)
sns.kdeplot(x=df[df.DM == 2]['AGE'], ax=ax)
sns.kdeplot(x=df[df.LIP == 2]['AGE'], ax=ax)

plt.legend(['HTN', 'DM', 'LIP'])
plt.show()
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) # ๊ฐ€๋กœ 1๊ฐœ, ์„ธ๋กœ 1๊ฐœ, figsize
sns.kdeplot(x=df[df.SEX == 1]['DRINK'], ax=ax)
sns.kdeplot(x=df[df.SEX == 2]['DRINK'], ax=ax)

plt.legend(['Male', 'Female'])
plt.show()
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) # ๊ฐ€๋กœ 1๊ฐœ, ์„ธ๋กœ 1๊ฐœ, figsize
sns.kdeplot(x=df[df.SEX == 1]['SMOKE'], ax=ax)
sns.kdeplot(x=df[df.SEX == 2]['SMOKE'], ax=ax)

plt.legend(['Male', 'Female'])
plt.show()
sns.catplot(x='EDU', y='DRINK', hue='SEX', kind='point', data=df)
plt.show()
sns.catplot(x='EDU', y='SMOKE', hue='SEX', kind='point', data=df)
plt.show()
s = sns.catplot(x="SEX", y="HEIGHT", data=df, kind='violin').set_xticklabels(['Male', 'Female'])
s.fig.set_size_inches(10, 6)
plt.show()
s = sns.catplot(x="SEX", y="WEIGHT", data=df, kind='violin').set_xticklabels(['Male', 'Female'])
s.fig.set_size_inches(10, 6)
plt.show()
s = sns.catplot(x="SEX", y="BMI", data=df, kind='violin').set_xticklabels(['Male', 'Female'])
s.fig.set_size_inches(10, 6)
plt.show()
sns.heatmap(df[['SMOKE', 'HTN']].groupby(['SMOKE']).mean())
plt.plot()
[]
sns.heatmap(df[['SMOKE', 'DM']].groupby(['SMOKE']).mean())
plt.plot()
[]
sns.heatmap(df[['SMOKE', 'LIP']].groupby(['SMOKE']).mean())
plt.plot()
[]
sns.heatmap(df[['DRINK', 'HTN']].groupby(['DRINK']).mean())
plt.plot()
[]
sns.heatmap(df[['DRINK', 'DM']].groupby(['DRINK']).mean())
plt.plot()
[]
sns.heatmap(df[['DRINK', 'LIP']].groupby(['DRINK']).mean())
plt.plot()
[]

AWS ์—ฐ๋™

AWS์—๋Š” ์ข‹์ง€ ์•Š์€ ๊ฐ์ •์ด ์ง€๋งŒ ๊ณผ์ œ ์ œ์ถœ์„ ์œ„ํ•ด ๋‹ค์‹œ ๋ฐฉ๋ฌธํ–ˆ๋‹ค. ์„œ๋ฒ„ ๋ฐฐํฌ๋ฅผ ์œ„ํ•ด์„œ ์•„๋ž˜ ์‚ฌ์ดํŠธ๋ฅผ ์ฐธ๊ณ ํ–ˆ๋‹ค

1๋ฒˆ๋ถ€ํ„ฐ 4๋ฒˆ ์‹œ๋ฆฌ์ฆˆ ๊นŒ์ง€๋งŒ ๋ณด๋ฉด ๋œ๋‹ค. ๊ทผ๋ฐ๋„ ์žฅ๋‚œ ์•„๋‹ˆ๋‹ค. ์ด ํŽ˜์ด์ง€๊ฐ€ ์ง„์งœ ์—„์ฒญ ์ž์„ธํ•˜๊ณ  ์นœ์ ˆํ•˜๊ฒŒ ์„ค๋ช…ํ–ˆ๋Š”๋ฐ๋„ ์˜ค๋ฅ˜๊ฐ€ ๋‚˜๋‹ˆ๊นŒ, ๋„ˆ๋ฌด ํž˜๋“ค์—ˆ๋‹ค. ๋ฐฐํฌ๊ฐ€ ์ด๋ ‡๊ฒŒ ์–ด๋ ต๋‹ค๋‹ˆ...

์™„์„ฑ๋œ ์›นํŽ˜์ด์ง€

์ธ๋ฐ, ์ธ์Šคํ„ด์Šค๋ฅผ ๋‹ซ์œผ๋ฉด ๋ชป ์—ด๊ฑฐ๊ฐ™์•„์„œ html ํŒŒ์ผ์„ ์—…๋กœ๋“œ ํ•œ๋‹ค. ๋ถ€ํŠธ์ŠคํŠธ๋žฉ์€ ๊ฐ™์ด ์„ค์ •์ด์•ˆ๋ผ์„œ ํ—ˆ์ „ํ•  ์ˆ˜ ์žˆ๋‹ค

๋“ฑ๋“ฑ๋“ฑ..

์ฃผ์†Œ :

https://www.kaggle.com/junsoopablo/korean-genome-and-epidemiology-study-koges
https://nerogarret.tistory.com/45
http://ec2-54-180-144-82.ap-northeast-2.compute.amazonaws.com/health/
17KB
EDA.html