23 Sat

TIL

[Statistics 110] 7๊ฐ•- ๋„๋ฐ•๊พผ์˜ ํŒŒ์‚ฐ ๋ฌธ์ œ์™€ ํ™•๋ฅ ๋ณ€์ˆ˜ (Gambler's Ruin and Random Variables)

Gambler's Ruin(๋„๋ฐ•๊พผ์˜ ํŒŒ์‚ฐ): A์™€ B ๋‘ ๋ช…์˜ ๋„๋ฐ•๊พผ์ด ๋งค ๋ผ์šด๋“œ $1์”ฉ ๊ฑธ๊ณ  ๋„๋ฐ•์„ ํ•œ๋‹ค. ์ด๊ธด ์‚ฌ๋žŒ์€ ์ƒ๋Œ€๋ฐฉ์˜ $1์„ ๊ฐ€์ ธ๊ฐ€๊ณ , ๋‘˜ ์ค‘ ํ•œ ๋ช…์ด ๊ฐ€์ง€๊ณ  ์˜จ ๋ˆ์ด ๋ฐ”๋‹ฅ๋‚  ๋•Œ๊นŒ์ง€ ์ด ๊ณผ์ •์„ ๋ฐ˜๋ณตํ•œ๋‹ค.

  • ์ด ๋ฌธ์ œ๋Š” 0๋ถ€ํ„ฐ N๊นŒ์ง€์˜ ์ˆ˜์ง์„ ์œ„์— i ์ง€์ ์— ์žˆ๋Š” ๋ฒŒ๋ ˆ์˜ ๋ฌด์ž‘์œ„ ํ–‰๋ณด๋ฌธ์ œ์™€ ๋™์ผํ•˜๋‹ค

p = P(A๊ฐ€ ํ•œ ๋ผ์šด๋“œ๋ฅผ ์ด๊ธธ ํ™•๋ฅ )

q = 1-p (B๊ฐ€ ํ•œ ๋ผ์šด๋“œ๋ฅผ ์ด๊ธธ ํ™•๋ฅ )

A๋Š” i ๋‹ฌ๋Ÿฌ, B๋Š” N-i ๋‹ฌ๋Ÿฌ๋ฅผ ๊ฐ€์ง€๊ณ  ๊ฒŒ์ž„์„ ํ•œ๋‹ค๊ณ  ํ•  ๋•Œ,

p์˜ ํ™•๋ฅ ๋กœ A๊ฐ€ 1๋‹ฌ๋Ÿฌ๋ฅผ ๋” ์–ป๊ณ , q์˜ ํ™•๋ฅ ๋กœ 1๋‹ฌ๋Ÿฌ๋ฅผ ์žƒ๋Š”๋‹ค. 0, N์€ ํก์ˆ˜์ƒํƒœ(absorbing state)๋ผ ํ•˜์—ฌ, ๊ฒŒ์ž„ ์ข…๋ฃŒ๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.

pip_iโ€‹โ€‹ : A๊ฐ€ i ๋‹ฌ๋Ÿฌ๋กœ ์‹œ์ž‘ํ•˜์—ฌ ๊ฒŒ์ž„์„ ์ด๊ธธ ํ™•๋ฅ  : P(Aย winsย gameโˆฃAย startย atย iย dollars) P(A ~wins ~game | A~ start~ at~ i~ dollars)

pi=pโ‹…pi+1+qโ‹…piโˆ’1โ€‹(1โ‰คiโ‰คNโˆ’1) p_i = p \cdot p_{i+1}+q \cdot p_{i-1}โ€‹ ( 1 \le i \le N-1) ์ด๊ณ , p0=0,pN=1p_0 = 0, p_{N} = 1 ์ด๋‹ค.

์ด๋ฅผ ๊ณ„์ฐจ๋ฐฉ์ •์‹(difference equation)์ด๋ผ๊ณ  ํ•œ๋‹ค.(๋ฏธ๋ถ„๋ฐฉ์ •์‹์˜ ์ด์‚ฐ ํ˜•ํƒœ)

guessing์„ ํ†ตํ•œ ํ’€์ด

pi=xip_i = x^i๋ผ๊ณ  ํ•˜์ž.

xi=pโ‹…xi+1+qโ‹…xiโˆ’1x^i = p \cdot x^{i+1} +q \cdot x^{i-1}โ€‹โ€‹

px2โˆ’x+q=0px^2 - x +q = 0

x=โˆ’1ยฑ1โˆ’4pq2px = \large {\frac{-1 \pm \sqrt{1-4pq}}{2p}} ์ด๊ณ , q=1โˆ’pq = 1-p์ด๊ธฐ ๋•Œ๋ฌธ์—, 1โˆ’4pq=(2pโˆ’1)21-4pq = (2p-1)^2โ€‹โ€‹ ์ด ์„ฑ๋ฆฝํ•œ๋‹ค.

๋”ฐ๋ผ์„œ xโˆˆ{1,qp}x \in \{1, \large\frac{q}{p} \} ์ด ๋•Œ, ์šฐ๋ฆฌ๊ฐ€ ๊ด€์‹ฌ์žˆ๋Š” ๊ฒƒ์€ p์™€ q๊ฐ€ ๋‹ค๋ฅผ ๋–„ ์ด๋‹ค.

โ†’ ๋‘ ํ•ด๊ฐ€ ๋‹ค๋ฅธ ๊ฒฝ์šฐ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ ํ˜•์ธ ์‹์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค.

pi=Aโ‹…1i+Bโ‹…(qp)iโ€‹โ€‹(pโ‰ q)p_i = A\cdot 1^i + B \cdot (\large\frac{q}{p})^iโ€‹โ€‹ (p \ne q)

์—ฌ๊ธฐ์— ์กฐ๊ฑด p0=0,pN=1p_0 = 0, p_{N} = 1 ์„ ๋Œ€์ž…ํ•˜๋ฉด,

p0=A+B=0p_0 = A+B = 0 โ†’B=โˆ’A\rightarrow B=-A

pN=A+B(qp)Nโ€‹โ€‹โ€‹=A(1โˆ’(qp)N)=1p_N = A +B \large(\frac{q}{p})^Nโ€‹โ€‹โ€‹ = A(1-\large(\frac{q}{p})^N)=1

A=11โˆ’(qp)NA = \Large \frac{1}{1-(\frac{q}{p})^N}

pi=1โˆ’(qp)i1โˆ’(qp)Nโˆ’i(pโ‰ q)p_i = \Large{\frac{1-(\frac{q}{p})^i}{1-(\frac{q}{p})^{N-i}}}(p \ne q)

๊ทธ๋ฆฌ๊ณ  p=qp = q ์ธ ๊ฒฝ์šฐ,

x=qpx = \large\frac{q}{p} ๋ผ๊ณ  ๋†“๊ณ  xโ†’1 x \rightarrow 1 ์˜ ๊ทนํ•œ์„ ์‚ดํŽด๋ณด์•˜์„ ๋•Œ,

limโกxโ†’1=limโกxโ†’11โˆ’xi1โˆ’xNโ€‹โ€‹=limโกxโ†’1i(xiโˆ’1)N(xNโˆ’1)=iN\lim_{x \rightarrow 1} = \lim_{x \rightarrow 1}{\large\frac{1-x^i}{1-x^N}}โ€‹โ€‹ = \lim_{x \rightarrow 1} \large \frac{i(x^{i-1})}{N(x^{N-1})} = \large \frac{i}{N}

โ‡’pi=1โˆ’(qp)i1โˆ’(qp)Nโˆ’i(pโ‰ q)ย orย iNโ€‹ย (p=q)\Rightarrow p_i = {\Large{\frac{1-(\frac{q}{p})^i}{1-(\frac{q}{p})^{N-i}}}} (p \ne q) ~ or ~ {\large \frac {i}{N}โ€‹}~ (p = q)

ํ•ด์„

ํ•˜์šฐ์Šค์™€ ๊ฐ™์€ ๋ˆ์„ ๊ฐ€์ง€๊ณ  ์‹œ์ž‘ํ•˜๊ณ , 1%์ •๋„๋กœ๋งŒ ๋ถˆ๊ณตํ‰ํ•œ ๊ฒŒ์ž„์ด๋ผ๊ณ  ํ•ด๋„ ๊ฒŒ์ž„์„ ๊ณ„์†ํ•˜๋‹ค ๋ณด๋ฉด ์ด๊ธธ ํ™•๋ฅ ์ด ๋งค์šฐ ์ ์–ด์ง€๊ฒŒ ๋œ๋‹ค. ('๋„๋ฐ•๊พผ์˜ ํŒŒ์‚ฐ')

ํ™•์ธํ•  ์ : ๊ฒŒ์ž„์ด ๋๋‚˜์ง€ ์•Š๊ณ  ์˜์›ํžˆ ๊ณ„์†๋  ํ™•๋ฅ ์ด ์žˆ๋Š”๊ฐ€?

๊ฒŒ์ž„์ด ๊ณตํ‰ํ•œ ์ƒํ™ฉ์—์„œ (p = q) B๊ฐ€ (N-i ๋‹ฌ๋Ÿฌ๋ฅผ ๊ฐ–๊ณ ) ์ด๊ธธ ํ™•๋ฅ ์€ Nโˆ’iNโ€‹\large \frac {N-i}{N}โ€‹์ด๋‹ค.

iN+Nโˆ’iN=1\large \frac{i}{N} + \frac{N-i}{N}=1 ์ด๋ฏ€๋กœ ๊ฒŒ์ž„์ด ๊ณ„์†๋  ํ™•๋ฅ ์€ 0์ด๋‹ค.

ํ™•๋ฅ ๋ณ€์ˆ˜(Random Variable): ํ‘œ๋ณธ๊ณต๊ฐ„ S๋ถ€ํ„ฐ ์‹ค์ˆ˜ ์ฒด๊ณ„ R๋กœ '๋งตํ•‘' ํ•˜๋Š” ํ•จ์ˆ˜

์˜ˆ์‹œ) ๋ฒ ๋ฅด๋ˆ„์ด(Bernoulli) ํ™•๋ฅ ๋ณ€์ˆ˜

X๊ฐ€ 0(์‹คํŒจ), 1(์„ฑ๊ณต) ๋‘ ๊ฐ€์ง€์˜ ๊ฐ’๋งŒ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์œผ๋ฉฐ,

P(x=1)=p, P(X=0) = 1-p ์ผ ๋•Œ

X๋Š” Bernoulli(p) ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ํ•œ๋‹ค.

์˜ˆ์‹œ) ์ดํ•ญ(Binomial) ํ™•๋ฅ ๋ณ€์ˆ˜

n๋ฒˆ์˜ ๋…๋ฆฝ์ ์ธ ๋ฒ ๋ฅด๋ˆ„์ด(p) ์‹œํ–‰์—์„œ ์„ฑ๊ณต ํšŸ์ˆ˜์˜ ๋ถ„ํฌ๋Š” Bin(n,p) ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ํ•œ๋‹ค.

  • ์ดํ•ญํ™•๋ฅ ๋ณ€์ˆ˜์˜ ํ™•๋ฅ ์งˆ๋Ÿ‰๋ณ€์ˆ˜(PMF): P(X=k)=(nk)pk(1โˆ’p)nโˆ’kP(X = k) = {n\choose k} p^k(1-p)^{n-k}

  • ์ดํ•ญํ™•๋ฅ ๋ณ€์ˆ˜์˜ ํŠน์ง•

X~Bin(n,p), Y~ Bin(m,p) ์ผ ๋•Œ,

X+Y~Bin(n+m,p) ๋ฅผ ๋”ฐ๋ฅธ๋‹ค.

Last updated

Was this helpful?