๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
  • Dense Layer๊ธฐ๋ฐ˜ Image ๋ถ„๋ฅ˜์˜ ๋ฌธ์ œ์ 
  • Feature Extractor์™€ CNN ๊ฐœ์š”
  • ์ปจ๋ณผ๋ฃจ์…˜(Convolution) ์—ฐ์‚ฐ ์ดํ•ด
  • ์ปค๋„(Kernel)๊ณผ ํ”ผ์ฒ˜๋งต(Feature Map)
  • ์ŠคํŠธ๋ผ์ด๋“œ(Stride)์™€ ํŒจ๋”ฉ(Padding)
  • ํ’€๋ง(Pooling)

Was this helpful?

  1. 2021 TIL
  2. MAY

8 Sat

๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ

Dense Layer๊ธฐ๋ฐ˜ Image ๋ถ„๋ฅ˜์˜ ๋ฌธ์ œ์ 

๋ฌธ์ œ์  1

  • MNIST๋‚˜ Fashion_MNIST๋Š” ์ด๋ฏธ์ง€ ์ค‘์•™์— ๋ถ„๋ฅ˜ ๋Œ€์ƒ์ด ์กด์žฌํ•˜๊ณ  ๋ถ„๋ฅ˜ ๋Œ€์ƒ ์ด์™ธ์—๋Š” ๋ชจ๋‘ ๋ฐฐ๊ฒฝ์ƒ‰์ด ๊ฒ€์€์ƒ‰์ด๋‹ค.

  • ์‹ค์ œ ์ด๋ฏธ์ง€๋Š” ๋ถ„๋ฅ˜ ๋Œ€์ƒ์ด ์ด๋ฏธ์ง€์˜ ์–ด๋””์— ์žˆ์„์ง€ ๋ชจ๋ฅด๊ณ  ๋ถ„๋ฅ˜ ๋Œ€์ƒ ์ด์™ธ์— ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์˜ ์ƒ‰์ƒ์ด ๋‹ค์–‘ํ•˜๋‹ค

๋ฌธ์ œ์  2

  • ์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ๊ฐ€ ์ปค์งˆ ์ˆ˜๋ก ๋„ˆ๋ฌด ๋งŽ์€ Weight๊ฐ€ ํ•„์š”ํ•˜๋‹ค

  • 500 x 500์˜ ์ด๋ฏธ์ง€๊ฐ€ ์€๋‹‰์ธต ํ•˜๋‚˜๋ฅผ ๊ฑฐ์น  ๋•Œ Weight 250,000๊ฐœ๊ฐ€ ํ•„์š”ํ•˜๋‹ค

    • ์€๋‹‰์ธต 10๊ฐœ๋ฉด 250M ๊ฐœ๊ฐ€ ํ•„์š”ํ•˜๋‹ค

๋ฌธ์ œ์  3

  • Dense๋Š” ์ด๋ฏธ์ง€์˜ ์ง€์—ญ์„ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š”๋‹ค

Feature Extractor์™€ CNN ๊ฐœ์š”

Feature Extraction

  • ์ด๋ฏธ์ง€์˜ ํŠน์ง•์ด ๋  ๋งŒํ•œ๊ฒƒ์„ ๋ฝ‘์•„๋‚ด๋Š” ๊ฒƒ

  • ์ „ํ†ต์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹์€ ์ด๊ฒƒ์„ ์‚ฌ๋žŒ์ด ์ง์ ‘ํ–ˆ๋Š”๋ฐ ๋”ฅ๋Ÿฌ๋‹์—์„œ๋Š” ์ด๊ฒƒ์„ ์ž์ฒด์ ์œผ๋กœ ํ•˜๊ฒŒ ๋œ๋‹ค.

Layer ๋ณ„ Feature

  • Layer๊ฐ€ ๊นŠ์–ด์งˆ์ˆ˜๋ก ์ถ”์ƒ์ ์ธ ํŠน์ง•์„ ๋ฝ‘์•„๋‚ด๊ฒŒ ๋œ๋‹ค

    • ๊นŠ์–ด์งˆ์ˆ˜๋ก ์ถ”์ƒํ™”์˜ ์ถ”์ƒํ™”

  • ์ดˆ๊ธฐ Layer์ผ์ˆ˜๋ก ๊ตฌ์ฒด์ ์ด๊ณ  ๋‹จ์ˆœํ•œ ํŠน์ง•์„ ๋ฝ‘์•„๋‚ธ๋‹ค

    • ์ , ์„ , ๋ฉด ๋“ฑ

CNN ๊ตฌ์กฐ

  • CNN์€ Feature Extractor์™€ Classifier๋กœ ๊ตฌ์„ฑ์ด ๋œ๋‹ค

  • Conv, Pool, Activation์€ ๋ชจ๋‘ F.E ์ด๋‹ค.

์ปจ๋ณผ๋ฃจ์…˜(Convolution) ์—ฐ์‚ฐ ์ดํ•ด

CNN์€

  • Classification์— ๋งž๋Š” ์ตœ์ ์˜ Feature๋ฅผ ์ถ”์ถœํ•˜๊ณ 

  • ์ตœ์ ์˜ Feature ์ถ”์ถœ์„ ์œ„ํ•œ ์ตœ์ ์˜ Weight ๊ฐ’์„ ๊ณ„์‚ฐํ•˜๊ณ 

  • ์ตœ์ ์˜ Feature ์ถ”์ถœ์„ ์œ„ํ•œ ํ•„ํ„ฐ๊ฐ’(ํ•„ํ„ฐ W)์„ ๊ณ„์‚ฐํ•œ๋‹ค

์ด๋ฏธ์ง€ ํ•„ํ„ฐ

  • ๋ณดํ†ต ์ •๋ฐฉ ํ–‰๋ ฌ์„ ์›๋ณธ ์ด๋ฏธ์ง€์— ์ˆœ์ฐจ์ ์œผ๋กœ ์Šฌ๋ผ์ด๋”ฉ ํ•ด๊ฐ€๋ฉด์„œ ์ƒˆ๋กœ์šด ํ”ฝ์…€๊ฐ’์„ ๋งŒ๋“ค๋ฉด์„œ ์ ์šฉํ•œ๋‹ค

    • ๋ธ”๋Ÿฌ ํ”ผํ„ฐ ๊ฐ™์€ ๊ฒฝ์šฐ๋Š” ํ‰๊ท ์„ ๋‚ด์„œ ๋”ํ•œ๋‹ค => ์ด๋ฏธ์ง€๊ฐ€ ํ๋ ค์ง€๋Š” ํšจ๊ณผ

Convolution ์—ฐ์‚ฐ

  • ๊ฐ•์˜์— ์„ค๋ช…์ด ๋„ˆ๋ฌด ์ž˜๋˜์–ด์žˆ์Œ

์ปค๋„(Kernel)๊ณผ ํ”ผ์ฒ˜๋งต(Feature Map)

ํ•„ํ„ฐ์™€ ์ปค๋„์˜ ๊ตฌ๋ถ„

  • CNN์—์„œ ํ•„ํ„ฐ์™€ ์ปค๋„์€ ๊ฑฐ์˜ ํ˜ผ์šฉ๋˜์–ด์„œ ์‚ฌ์šฉ๋œ๋‹ค

  • ๋ช…ํ™•ํžˆ๋Š” ํ•„ํ„ฐ๋Š” ์—ฌ๋Ÿฌ๊ฐœ์˜ ์ปค๋„๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค

  • ์ปค๋„์€ ํ•„ํ„ฐ๋‚ด์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ๊ฐ’์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋‹ค

  • conv_out_01=Conv2D(filter=32, kernel_size=3)(input_tensor)

    • fkernel์˜ ํฌ๊ธฐ๋Š” 3 * 3

    • kernel์˜ ๊ฐœ์ˆ˜๋Š” 32๊ฐœ

์ปค๋„ ์‚ฌ์ด์ฆˆ ํŠน์ง•

  • ๋ณดํ†ต ์ปค๋„์€ ์ •๋ฐฉํ–‰๋ ฌ์ด๋‹ค.

  • Kernel size๋ผ๊ณ  ํ•˜๋ฉด ๋ฉด์ (๊ฐ€๋กœx์„ธ๋กœ)์„ ์˜๋ฏธํ•œ๋‹ค

    • ์ปค๋„ ์‚ฌ์ด์ฆˆ์˜ ํฌ๊ธฐ๊ฐ€ ํฌ๋ฉด ํด ์ˆ˜๋ก ์ž…๋ ฅ Feature Map(๋˜๋Š” ์›๋ณธ ์ด๋ฏธ์ง€)์—์„œ ๋” ๋งŽ์€(๋˜๋Š” ๋” ํฐ) Feature ์ •๋ณด๋ฅผ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ๋‹ค

    • ํ•˜์ง€๋งŒ ํฐ ์‚ฌ์ด์ฆˆ์˜ ์ปค๋„์€ ํ›จ์”ฌ ๋” ๋งŽ์€ ์—ฐ์‚ฐ๋Ÿ‰๊ณผ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค

  • Receptive Field, ์ˆ˜์šฉ์žฅ

    • ์ž…๋ ฅ์—์„œ Feature๋ฅผ ๋งŒ๋“œ๋Š” ์˜์—ญ์˜ ๊ธฐ๋ณธ ํฌ๊ธฐ

CNN์˜ ํ•„ํ„ฐ ๊ฐ’

  • ์ผ๋ฐ˜์ ์œผ๋กœ Vision์˜์—ญ์—์„œ๋Š” ํŠน์ • ํ•„ํ„ฐ๋ฅผ ์Šค์Šค๋กœ ๋งŒ๋“ค๊ฑฐ๋‚˜ ๊ธฐ์กด์— ์„ค๊ณ„๋œ ๋‹ค์–‘ํ•œ ํ•„ํ„ฐ๋ฅผ ์„ ํƒํ•˜์—ฌ ์ด๋ฏธ์ง€์— ์ ์šฉํ•œ๋‹ค

  • ๋”ฅ๋Ÿฌ๋‹์˜ CNN์€ ์ตœ์ ์˜ ํ•„ํ„ฐ๊ฐ’์„ ํ•™์Šต์„ ํ†ตํ•ด ์Šค์Šค๋กœ ์ตœ์ ํ™”ํ•จ

์ŠคํŠธ๋ผ์ด๋“œ(Stride)์™€ ํŒจ๋”ฉ(Padding)

์ŠคํŠธ๋ผ์ด๋“œ

  • ์˜์–ด ๋‹จ์–ด ๋œป์€ ๊ฑฐ๋‹๋‹ค

  • Filter๋ฅผ ์ ์šฉํ•  ๋•Œ Sliding Window๊ฐ€ ์ด๋™ํ•˜๋Š” ๊ฐ„๊ฒฉ์„ ์˜๋ฏธ

  • ๊ธฐ๋ณธ์€ 1์ด์ง€๋งŒ 2๋กœ ์„ค์ •ํ•˜๊ฒŒ ๋˜๋ฉด Feature map์˜ ํฌ๊ธฐ๋ฅผ ์ ˆ๋ฐ˜์ •๋„๋กœ ์ค„์ธ๋‹ค.

    • stride๋ฅผ ํ‚ค์šฐ๋ฉด ๊ณต๊ฐ„์ ์ธ feature ํŠน์„ฑ์„ ์†์‹คํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์ง€๋งŒ ๋ถˆํ•„์š”ํ•œ ํŠน์„ฑ์„ ์ œ๊ฑฐํ•˜๋Š” ํšจ๊ณผ๋ฅผ ๊ฐ€์ ธ์˜ฌ ์ˆ˜๋„ ์žˆ๊ณ  Convolution ์—ฐ์‚ฐ ์†๋„๋ฅผ ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค

ํŒจ๋”ฉ

  • ์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ(๋˜๋Š” Feature map)๊ฐ€ ์ž‘์•„์ง€๋Š” ๊ฒƒ์„ ๋ง‰๊ธฐ ์œ„ํ•œ ๊ธฐ๋ฒ•

  • Filter ์ ์šฉ ์ „ ๋ณด์กดํ•˜๋ ค๋Š” Feature map ํฌ๊ธฐ์— ๋งž๊ฒŒ ์ž…๋ ฅ์˜ ์ขŒ์šฐ ๋๊ณผ ์ƒํ•˜ ๋์— ์—ด๊ณผ ํ–‰์„ ์ถ”๊ฐ€ํ•œ๋‹ค

  • Conv2D(padding='same') ์„ ํ•˜๋ฉด feature map์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๊ณ  Conv2D(padding='valid') ๋ฅผ ํ•˜๋ฉด ๋ณ„๋„์˜ ํŒจ๋”ฉ์„ ์ ์šฉํ•˜์ง€ ์•Š๋Š”๋‹ค

  • ์ˆ˜๋ฅผ ๋ฌด์—‡์œผ๋กœ ์ฑ„์šธ์ง€์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด ์žˆ๋‹ค

    • 0๋ฏ€๋กœ ๋ชจ๋‘ ์ฑ„์šฐ๋Š” Zero Padding

      • ๋ชจ์„œ๋ฆฌ ์ฃผ๋ณ€๊ฐ’์ด 0์ด ๋˜์–ด ๋…ธ์ด์ฆˆ๊ฐ€ ์•ฝ๊ฐ„ ์ฆ๊ฐ€๋˜๋Š” ์šฐ๋ ค๋„ ์žˆ์„ ์ˆ˜ ์žˆ์ง€๋งŒ ํฐ ์˜ํ–ฅ์€ ์—†๋‹ค

ํ’€๋ง(Pooling)

  • Conv๊ฐ€ ์ ์šฉ๋œ Feature map์˜ ์ผ์ • ์˜์—ญ ๋ณ„๋กœ ํ•˜๋‚˜์˜ ๊ฐ’์„ ์ถ”์ถœํ•˜์—ฌ Feature map์˜ ์‚ฌ์ด์ฆˆ๋ฅผ ์ค„์ด๋Š” ๊ธฐ๋ฒ•

    • ์™œ๋ƒํ•˜๋ฉด filter๊ฐ€ ์ ์šฉํ•  ๋•Œ ์ค‘๋ณต๋˜์„œ ์ ์šฉ๋˜๋Š” ํ”ฝ์…€๊ฐ’๋“ค์ด ์žˆ๋‹ค.

    • ๋ณดํ†ต Poolingํฌ๊ธฐ์™€ Stride๋ฅผ ๋™์ผํ•˜๊ฒŒ ๋ถ€์—ฌํ•˜์—ฌ ๋ชจ๋“  ๊ฐ’์ด ํ•œ๋ฒˆ๋งŒ ์ฒ˜๋ฆฌ ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค

ํŠน์ง•

  • feature๋“ค์ด ์„œ๋กœ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€์—์„œ ์œ„์น˜๊ฐ€ ๋‹ฌ๋ผ์ง€๋ฉด์„œ ๋‹ค๋ฅด๊ฒŒ ํ•ด์„๋˜๋Š” ํ˜„์ƒ์„ ์ค‘ํ™”์‹œ์ผœ์ค€๋‹ค

  • feature map์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋ฏ€๋กœ computation ์—ฐ์‚ฐ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค

  • max pooling์˜ ๊ฒฝ์šฐ ๋ณด๋‹ค sharpํ•œ feature๋ฅผ ์ถ”์ถœํ•˜๊ณ  average์˜ ๊ฒฝ์šฐ smoothํ•œ feature๋ฅผ ์ถ”์ถœํ•œ๋‹ค

  • ์ผ๋ฐ˜์ ์œผ๋กœ๋Š” sharpํ•œ feature๊ฐ€ classification์— ์œ ๋ฆฌํ•ด์„œ max pooling์„ ๋งŽ์ด ์‚ฌ์šฉํ•œ๋‹ค

stride/padding/pooling

  • stride๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋Š”๊ฒƒ๊ณผ pooling ๋ชจ๋‘ ์ถœ๋ ฅ feature map์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š”๋ฐ ์‚ฌ์šฉํ•œ๋‹ค

  • pooling์˜ ๊ฒฝ์šฐ ํŠน์ • ์œ„์น˜์˜ feature๊ฐ’์ด ์†์‹ค ๋˜๋Š” ์ด์Šˆ๋กœ ์ตœ๊ทผ์—๋Š” ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ

  • ์ตœ๊ทผ ๋ฐœํ‘œ๋˜๋Š” ๋…ผ๋ฌธ์—์„œ stride๋กœ feature map ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์ด pooling ๋ณด๋‹ค ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค๋Š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐœํ‘œํ•˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค

  • ResNet๋ถ€ํ„ฐ๋Š” ์ตœ๋Œ€ํ•œ Pooling์„ ์ž์ œํ•˜๊ณ  Stride๋ฅผ ์ด์šฉํ•˜์—ฌ Network๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒฝํ–ฅ์ด ๊ฐ•ํ•ด์ง„๋‹ค

Previous9 SunNext7 Fri

Last updated 4 years ago

Was this helpful?