๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • Introduction
  • Basic Discrete Distributions
  • Conditional Independence
  • Auto-regressive Model
  • NADE: Neural Autoregressive Density Estimator
  • Pixel RNN

Was this helpful?

  1. TIL : ML
  2. Boostcamp 2st
  3. [U]Stage-2
  4. DL Basic

(09๊ฐ•) Generative Models 1

210813

Previous(10๊ฐ•) Generative Models 2Next(08๊ฐ•) Sequential Models - Transformer

Last updated 3 years ago

Was this helpful?

Introduction

Generative model์„ ๋งŒ๋“ ๋‹ค, ํ•™์Šตํ•œ๋‹ค๋ผ๋Š” ๊ฒƒ์€?

  • ๊ทธ๋Ÿด๋“ฏํ•œ ์ด๋ฏธ์ง€๋‚˜ ๋ฌธ์žฅ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด๋ผ๊ณ  ๋ณดํ†ต ์ƒ๊ฐํ•œ๋‹ค

  • ๊ทธ๋Ÿฌ๋‚˜, ๋‹จ์ˆœํžˆ "์ƒ์„ฑ"์˜ ์˜๋ฏธ๋งŒ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์ด gen model์˜ ์ „๋ถ€๋Š” ์•„๋‹ˆ๋‹ค. ๊ทธ๊ฒƒ๋ณด๋‹ค ๋” ๋งŽ์€ ๊ฐœ๋…์„ ํฌํ•จํ•œ๋‹ค

  • Generation : ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์— ์—†๋Š” ๊ฐ•์•„์ง€ ์‚ฌ์ง„์„ ๋งŒ๋“œ๋Š” ๊ฒƒ๋„ gen์ด ํ• ์ˆ˜์žˆ๋Š” ์ผ.

  • Density estimation : ๊ฐ•์•„์ง€ ๊ฐ™์€์ง€ ์•„๋‹Œ์ง€ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ

    • ๋งˆ์น˜ ๋ถ„๋ฅ˜๋ชจ๋ธ๊ณผ ๊ฐ™๋‹ค.

์–ด๋–ค ๋ชจ๋ธ์ด Generative model์ด๋ผ๊ณ  ํ•˜๋ฉด, ๊ทธ ๋ชจ๋ธ์€ ๋‹จ์ˆœํžˆ generation ํ•˜๋Š” ๋Šฅ๋ ฅ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ๊นŒ์ง€ ํฌํ•จํ•œ๋‹ค.

  • explicit model์— ์†ํ•œ๋‹ค. ์ž…๋ ฅ์ด ์ฃผ์–ด์กŒ์„ ๋•Œ ์ž…๋ ฅ์— ๋Œ€ํ•œ ํ™•๋ฅ ๊ฐ’์„ ์–ป์–ด๋‚ผ ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ๋œปํ•œ๋‹ค.

  • feature learning : gen model์€ unsupervised learning๋„ ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ์ด์•ผ๊ธฐ ํ•œ๋‹ค.

Basic Discrete Distributions

์˜ˆ๋ฅผ ํ•œ๋ฒˆ ๋“ค์–ด๋ณด์ž

ํ•œ ํ”ฝ์…€๋‹น ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒ‰์€ ๋ช‡๊ฐ€์ง€์ผ๊นŒ?

  • 256 * 256 * 256

๊ทธ๋ ‡๋‹ค๋ฉด ์ƒ‰์„ ์ •์˜ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” ๋ช‡๊ฐœ์ผ๊นŒ?

๋ฐ”์ด๋„ˆ๋ฆฌ ์ด๋ฏธ์ง€(ํ‘๋ฐฑ ์ด๋ฏธ์ง€)์—์„œ ํ”ฝ์…€์ด n๊ฐœ๋ผ๋ฉด ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€์˜ ๊ฒฝ์šฐ์˜ ์ˆ˜๋Š” ๋ช‡๊ฐœ์ผ๊นŒ?

  • 2n 2^n 2n

๊ทธ๋ ‡๋‹ค๋ฉด ์ฐจ์›์ด n์ธ ๋ฒกํ„ฐ X๊ฐ€ n๊ฐœ ์žˆ๋‹ค๊ณ  ํ–ˆ์„ ๋•Œ, ์ด ๋ฒกํ„ฐ๋ฅผ ์ •์˜ํ•˜๋ ค๋ฉด ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” ๋ช‡๊ฐœ์ผ๊นŒ?

  • 2nโˆ’1 2^n -12nโˆ’1

์—ฌ๊ธฐ์„œ, ์š”์ง€๋Š” n๊ฐœ์˜ ํ”ฝ์…€์„ ๊ตฌ์„ฑํ•  ๋•Œ ์กฐ๊ธˆ ๋” ์ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†์„๊นŒ? ๋ผ๋Š” ๊ฒƒ. ๊ทธ๋ž˜์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฐ€์ •์„ ๋‘”๋‹ค. ํ”ฝ์…€๋“ค์€ ์„œ๋กœ "Independent" ํ•˜๋‹ค.

  • ํ˜„์žฌ ํ”ฝ์…€์ด ์ฃผ๋ณ€ ํ”ฝ์…€์—๊ฒŒ ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๊ณ , ์˜ํ–ฅ์„ ๋ฐ›์ง€์•Š๋Š”๋‹ค๋Š” ๋œป์œผ๋กœ ํ•ด์„ํ•˜๋ฉด ๋œ๋‹ค.

๊ทธ๋ ‡๊ฒŒ ๋˜๋ฉด ๊ฒฝ์šฐ์˜ ์ˆ˜๋Š” ๋˜‘๊ฐ™์ง€๋งŒ ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” n๊ฐœ๋งŒ ์žˆ์œผ๋ฉด ๋œ๋‹ค.

  • ๊ฐ๊ฐ์˜ ํ”ฝ์…€์€ ๋ฒ ๋ฅด๋ˆ„์ด ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅด๋ฏ€๋กœ ํ•„์š”ํ•œ ๋ชจ์ˆ˜๋Š” ํ™•๋ฅ  p ํ•˜๋‚˜์ด๋‹ค. ๋˜ ํ™•๋ฅ  p(x1, ... xn)์—์„œ ๊ฐ๊ฐ์˜ x๋Š” ๋…๋ฆฝ์ด๋ฏ€๋กœ joint distribution์ด ๊ฐ€๋Šฅํ•ด์„œ ๊ฐ๊ฐ์˜ ํ™•๋ฅ ๊ณฑ p(x1)p(x2)...p(xn) ์œผ๋กœ ํ‘œํ˜„์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ๊ฐœ์ˆ˜๋Š” n์ด๋‹ค.

  • ๊ทธ๋Ÿฌ๋‚˜ ์ด๊ฑด ์–ด๋””๊นŒ์ง€๋‚˜ Independent Assumption์ด ์ž‘์šฉํ–ˆ์„ ๋•Œ์˜ ์ด์•ผ๊ธฐ

Fully Dependentํ•˜๋ฉด ํŒŒ๋ผ๋ฏธํ„ฐ์ˆ˜๊ฐ€ ๋„ˆ๋ฌด ๋งŽ๊ณ , Independent ํ•˜์ž๋‹ˆ ํŒŒ๋ผ๋ฏธํ„ฐ์ˆ˜๋Š” ์ค„์–ด๋“ค์–ด์„œ ์ข‹์ง€๋งŒ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ์ด๋ฏธ์ง€๊ฐ€ ์ ์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ์ค‘๊ฐ„์ฏค์„ ์ฐพ๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ

๊ทธ๋ž˜์„œ Conditional Independence ๋ฅผ ์‚ฌ์šฉํ•˜๊ฒŒ๋œ๋‹ค.

Conditional Independence

๊ธฐ๋ณธ์ ์œผ๋กœ ์“ฐ๋Š” ์—ฐ์‡„๋ฒ•์น™์ด๋‹ค. x์˜ ๋…๋ฆฝ/์ข…์†์— ๊ด€๊ณ„์—์„œ ํ•ญ์ƒ ๋งŒ์กฑํ•œ๋‹ค

๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ํ•ญ์ƒ ๋งŒ์กฑํ•˜๋Š” ๋ฒ•์น™

์ด๋Š” ํ•ญ์ƒ ๋งŒ์กฑํ•˜์ง€๋Š” ์•Š๋‹ค. z๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ x์™€ y๊ฐ€ independent ํ•˜๋‹ค๋ฉด ๋งŒ์กฑํ•œ๋‹ค.

์ฒด์ธ๋ฃฐ์„ ์‚ฌ์šฉํ•  ๋•Œ ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐœ์ˆ˜๋Š” ๋ช‡๊ฐœ์ผ๊นŒ?

๋‚œ ์ด๋ถ€๋ถ„์ด ์ดํ•ด๊ฐ€ ์ž˜ ์•ˆ๊ฐ”๋‹ค๊ฐ€ ์งˆ๋ฌธํ•˜๊ณ  ๊ณ ๋ฏผํ•˜๊ณ  ํ•œ ๋์— ์ดํ•ดํ–ˆ๋‹ค

์ข…์†์ : p(x2|x1)์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‘๊ฐ€์ง€๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅ p(x2|x1=1)๊ณผ p(x2|x1=0)

  • p(x2|x1=1) ์—์„œ ํ•„์š”ํ•œ x2๋ฅผ ๊ฒฐ์ •ํ•˜๋Š”ํ™•๋ฅ  q1

  • p(x2|x1=0) ์—์„œ ํ•„์š”ํ•œ x2๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํ™•๋ฅ  q2

์ด ๋•Œ ํ™•๋ฅ  q1๊ณผ q2๊ฐ€ ํ•„์š”ํ•˜๋ฏ€๋กœ ์ข…์†์ ์ผ ๋•Œ๋Š” ์„ธ ๊ฐœ(p, q1, q2)์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ํ•„์š”(2^n-1๊ฐœ)

  • ๋งŒ์•ฝ q1 = q2๊ฐ€ ๊ฐ™๋‹ค๋ฉด x1์ด ๋ญ๋“ ๊ฐ„์— x2์˜ ํ™•๋ฅ ์ด ๊ฐ™๋‹ค๋Š” ๊ฒƒ์ด๋ฏ€๋ฅด ์ข…์†์ด๋ผ๋Š” ๊ฐ€์ •์— ์œ„๋ฐฐ

๋…๋ฆฝ์ : p(x2|x1) = p(x2) ์ด๋ฏ€๋กœ x2๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ํ™•๋ฅ  q ๋”ฐ๋ผ์„œ, ๋…๋ฆฝ์ ์ผ ๋•Œ๋Š” ๋‘ ๊ฐœ(p, q)์˜ ํŒŒ๋ผ๋ฏธํ„ฐ ํ•„์š”(n๊ฐœ)

์ด์ œ Markov assumption์ด๋ผ๊ณ  ๊ฐ€์ •ํ•ด๋ณด์ž. ๊ทธ๋Ÿผ ํ™•๋ฅ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ์ด๋Š” ํ˜„์žฌ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ€์žฅ ์ตœ๊ทผ์— ๋ฐ์ดํ„ฐ ํ•˜๋‚˜์—๋งŒ ์˜์กด์ ์ด๋ผ๋Š” ๊ฒƒ(=์˜ํ–ฅ์„ ๋ฐ›๋Š”๋‹ค)

ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค

  • x1์€ ํ•œ๊ฐœ๊ฐ€ ํ•„์š”ํ•˜๊ณ  ๊ทธ ๋’ค๋ถ€ํ„ฐ๋Š” 2๊ฐœ์”ฉ ํ•„์š”ํ•˜๋ฏ€๋กœ

์ž˜๋ณด๋ฉด ์ฒ˜์Œ์— Fully Independent ํ•  ๋•Œ๋Š” 2n 2^n 2n๊ฐœ์ด๊ณ  Markov assumption์„ ์ ์šฉํ•˜๋‹ˆ ์ง€์ˆ˜๊ฐ€ ํ•œ ์ฐจ์› ๋‚ด๋ ค๊ฐ„ 2nโˆ’1 2n-1 2nโˆ’1๊ทธ๋ฆฌ๊ณ  ์™„์ „ ๋…๋ฆฝ์ผ ๋•Œ๋Š” n n n๊ฐœ์ด๋‹ค.

๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๊ฐ€ ์กฐ๊ฑด์„ ์–ด๋–ป๊ฒŒ ์ •ํ•ด์ฃผ๋ƒ์— ๋”ฐ๋ผ์„œ ํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๊ฐ€ ๋‹ฌ๋ผ์ง€๋ฉฐ ๋…๋ฆฝ์— ๊ฐ€๊นŒ์šธ ์ˆ˜๋ก ์ ์–ด์ง€๊ณ  ์ข…์†์— ๊ฐ€๊นŒ์šธ ์ˆ˜๋ก ๋งŽ์•„์ง„๋‹ค.

์ด๋ ‡๊ฒŒ conditional independency๋ฅผ ์ž˜ ํ™œ์šฉํ•˜๋Š” ๋ชจ๋ธ์„ Auto-regressive Model ์ด๋ผ๊ณ  ํ•œ๋‹ค.

Auto-regressive Model

์œ„์™€ ๊ฐ™์ด MNIST 28*28 ๋ฐ”์ด๋„ˆ๋ฆฌ ์ด๋ฏธ์ง€๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜์ž. ์šฐ๋ฆฌ์˜ ๋ชฉํ‘œ๋Š” p(xi)๋ฅผ ํ•™์Šตํ•˜๋Š” ๊ฒƒ.(i๋Š” 1๋ถ€ํ„ฐ 784) ์ด ๋•Œ p(x)๋ฅผ ์–ด๋–ป๊ฒŒ ์ •์˜ํ• ๊นŒ?

๋ฐ”๋กœ, ์—ฐ์‡„๋ฒ•์น™์„ ์‚ฌ์šฉํ•ด์„œ ๊ฒฐํ•ฉ ๋ถ„ํฌ๋กœ ๋ณ€๊ฒฝํ•˜๋Š” ๊ฒƒ. ์ด ๋•Œ ์—ฌ๋Ÿฌ ์กฐ๊ฑด์„ ์„ค์ •ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ํ˜„์žฌ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐ”๋กœ ์ „ ๋ฐ์ดํ„ฐ์—๋งŒ ์˜ํ–ฅ์„ ๋ฐ›๋“ , ํ˜„์žฌ ๋ฐ์ดํ„ฐ๊ฐ€ ์ฒซ ๋ฐ์ด๋”๋ถ€ํ„ฐ ๋ฐ”๋กœ ์ „ ๋ฐ์ดํ„ฐ๊นŒ์ง€์— ์˜ํ–ฅ์„ ๋ฐ›๋“  ๋ชจ๋‘ Auto-regressive Model์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

์ˆซ์ž๋“ , ๋ฌธ์ž๋“ , ์ด๋ฏธ์ง€๋“  ์ˆœ์„œ๋ฅผ ์ •ํ•ด์ฃผ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.

  • ์ด๋ฏธ์ง€์˜ ์ˆœ์„œ๋ฅผ ์ •ํ•ด์ฃผ๋Š” ๊ฒƒ์€ ์• ๋งคํ•˜๋‹ค. ๊ฐ€๋กœ๋กœ ํ•œ์ค„๋กœ ๋‚˜์—ดํ•  ์ˆ˜๋„ ์žˆ๊ณ , ์ง€๊ทธ์žฌ๊ทธ๋กœ ์ˆœ์„œ๋ฅผ ์ •ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ์„ฑ๋Šฅ๋„ ๋‹ฌ๋ผ์งˆ ๊ฒƒ์ด๊ณ  ๋ฐฉ๋ฒ•๋ก ๋„ ๋‹ฌ๋ผ์งˆ ๊ฒƒ์ด๋‹ค.

Auto-reg๊ฐ€ ๋ฐ์ดํ„ฐ 1๊ฐœ๋งŒ์„ ๊ณ ๋ คํ•  ๋•Œ AR-1 ๋ชจ๋ธ์ด๋ผ๊ณ  ํ•˜๋ฉฐ n๊ฐœ๋ฅผ ๊ณ ๋ คํ•  ๋•Œ๋Š” AR-n ๋ชจ๋ธ์ด๋ผ๊ณ  ํ•œ๋‹ค

NADE: Neural Autoregressive Density Estimator

๊ฐ ๋ฐ์ดํ„ฐ์…‹์˜ ์ˆœ์„œ์˜ ์‹ ๊ฒฝ๋ง์€ ์ด์ „ ๋ฐ์ดํ„ฐ์…‹์„ ์ž…๋ ฅ๋ฐ›์œผ๋ฏ€๋กœ ๋ช…ํ™•ํžˆ Autoreg ๋ชจ๋ธ์ด๋‹ค. ๊ฐ ์‹ ๊ฒฝ๋ง์€ ์ ์  ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ์ฐจ์›์ด ์ปค์ง€๊ฒŒ๋˜๊ณ  ์ด์— ๋”ฐ๋ผ ๊ฐ€์ค‘์น˜์˜ ํฌ๊ธฐ๋„ ์ปค์ง€๊ฒŒ ๋œ๋‹ค.

์ด ๋ชจ๋ธ์˜ ํ™•๋ฅ ๋ถ„ํฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

impulse ๋ชจ๋ธ์€ generating๋งŒ ํ•  ์ˆ˜์žˆ๋Š”๋ฐ ๋ฐ˜ํ•ด explicit ๋ชจ๋ธ์„ generate์™€ classify๋ฅผ ๋‘˜ ๋‹ค ํ•  ์ˆ˜ ์žˆ๋‹ค.

๋˜, ๋งŒ์•ฝ์— ์—ฐ์†ํ™•๋ฅ ๋ถ„ํฌ์ผ๊ฒฝ์šฐ ๊ฐ€์šฐ์‹œ์•ˆ ํ˜ผํ•ฉ๋ชจ๋ธ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

Pixel RNN

RNN์„ ์‚ฌ์šฉํ•ด์„œ ํ”ฝ์…€์„ ์ƒ์„ฑํ•˜๋Š” ๋ชจ๋ธ

autoreg ๋ชจ๋ธ์€ FC๋ฅผ ๊ฑฐ์ณ์„œ ๋งŒ๋“ค์–ด์ง€๋Š”๋ฐ, pixel rnn์€ recurrent๋ฅผ ํ†ตํ•ด generation์ด ์ด๋ฃจ์–ด์ง„๋‹ค.

๋˜, ์ด ๋•Œ ordering ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด ์ƒ๊ธฐ๋Š”๋ฐ

Row LSTM์€ ์ž์‹ ๋ณด๋‹ค ์œ„์ชฝ์— ์žˆ๋Š” ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๊ฒ ๋‹ค๋Š” ๊ฒƒ์ด๊ณ  Diagonal BiLSTM์€ ์ž์‹ ๋ณด๋‹ค ์ด์ „์— ์žˆ๋Š” ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๊ฒ ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค