๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • Semantic Segmentation
  • Fully Convolutional Network
  • Deconvolution(conv transpose)
  • Detection
  • R-CNN
  • SPPNet
  • Fast R-CNN
  • Faster R-CNN
  • YOLO

Was this helpful?

  1. TIL : ML
  2. Boostcamp 2st
  3. [U]Stage-2
  4. DL Basic

(06๊ฐ•) Computer Vision Applications

210812

Previous(07๊ฐ•) Sequential Models - RNNNext(05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ

Last updated 3 years ago

Was this helpful?

์ด์ „์˜ ๋ชจ๋ธ๋“ค์€ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ Segmentaion๊ณผ Detection๋“ค์— ๋Œ€ํ•ด์„œ๋„ ์—ฐ๊ตฌํ–ˆ๋‹ค.

Semantic Segmentation

์ด๋ฏธ์ง€์˜ ๋ชจ๋“  ํ”ฝ์…€์ด ์–ด๋–ค ๋ผ๋ฒจ์— ์†ํ•˜๋Š”์ง€ ์ฐพ๋Š” ๊ฒƒ์ด๋‹ค. Dense Classification

  • ์ž์œจ์ฃผํ–‰ ๋ฌธ์ œ๋“ฑ์˜ ๋งŽ์ด ์‚ฌ์šฉ๋œ๋‹ค.

Fully Convolutional Network

์ „ํ†ต์ ์ธ CNN์€ ์ด๋ ‡๋‹ค.

Fully convolutional network๋Š” dense layer๊ฐ€ ์—†๋‹ค.

dense layer๋ฅผ ์—†์• ๋Š” ๊ณผ์ •์„ convolutionalization ์ด๋ผ๊ณ  ํ•œ๋‹ค. dense layer๊ฐ€ ์—†์–ด์ง„ ์ž์ฒด๊ฐ€ ์žฅ์ .

ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋Š” ๋™์ผํ•˜๋‹ค.

  • ์™ผ์ชฝ : 4x4(ํ•„ํ„ฐ) x 16(์ž…๋ ฅ์ฑ„๋„) x 10(์ถœ๋ ฅ์ฑ„๋„)

  • ์˜ค๋ฅธ์ชฝ 4x4(ํ•„ํ„ฐ) x 16(์ž…๋ ฅ์ฑ„๋„) x 10(์ถœ๋ ฅ์ฑ„๋„)

ํŒŒ๋ผ๋ฏธํ„ฐ๋„ ๋‹ฌ๋ผ์ง„ ๊ฒƒ์ด ์—†๋Š”๋ฐ ์™œ ์ด๋ ‡๊ฒŒ ํ• ๊นŒ?

๊ธฐ์กด CNN์€ ๊ฒฐ๊ณผ๋ฅผ 1์ฐจ์›์œผ๋กœ ๋ฑ‰๊ธฐ ๋•Œ๋ฌธ์— ๋‹จ์ˆœํžˆ ๋ถ„๋ฅ˜๋งŒ ํ•  ์ˆ˜ ์žˆ์—ˆ๋Š”๋ฐ, FCN์€ ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง€๋กœ ๋ฑ‰๊ธฐ ๋•Œ๋ฌธ์— ์ž…๋ ฅ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ํžˆํŠธ๋งต์„ ์–ป์„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ(๋‚˜๋„ ํ™•์‹คํ•˜๊ฒŒ ์ž˜ ๋ชจ๋ฅด๊ฒ ๋‹ค)

๋˜ํ•œ, FCN์€ ์–ด๋–ค ํฌ๊ธฐ์˜ ์ž…๋ ฅ์ด๋ผ๋„ ์ƒ๊ด€์—†์ด ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์ถœ๋ ฅ์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘์•„์ง€๊ฒŒ๋œ๋‹ค. ๊ทธ๋ž˜์„œ ์ด๋Ÿฌํ•œ ์ถœ๋ ฅ์˜ ํฌ๊ธฐ๋ฅผ ๋Š˜๋ฆด ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ๋“ค์ด ํ•„์š”ํ–ˆ๊ณ  ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ๋“ค์ด ๋“ฑ์žฅํ•˜๊ฒŒ ๋œ๋‹ค

Deconvolution(conv transpose)

convolution์˜ ์—ญ์—ฐ์‚ฐ์„ ํ•ด์ค€๋‹ค. ๊ทธ๋Ÿฌ๋ฉด 30x30์ด 15x15๊ฐ€ ๋œ ๊ฒƒ์„ ๋‹ค์‹œ 30x30์œผ๋กœ ํ•˜๊ฒŒ ํ•ด์ค€๋‹ค. ๊ทผ๋ฐ ์‚ฌ์‹ค ์—ญ์—ฐ์‚ฐ์€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค.

  • 3 + 7 = 10 ์ด๊ณ  2 + 8 = 10 ์ด์ง€๋งŒ, 10์„ ๊ฐ€์ง€๊ณ  ์›๋ž˜ ์ˆ˜๊ฐ€ ๋ฌด์—‡์ด์˜€๋Š”์ง€๋Š” ์•Œ ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ

๋”ฐ๋ผ์„œ ์—„๋ฐ€ํžˆ ๋งํ•˜๋ฉด ์—ญ์—ฐ์‚ฐ์€ ์•„๋‹ˆ๋‹ค. ๊ทธ๋ ‡์ง€๋งŒ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ˆซ์ž์™€ ๋„คํŠธ์›Œํฌ์˜ ๊ตฌ์กฐ๋ฅผ ๋ดค์„ ๋•Œ๋Š” ์—ญ์—ฐ์‚ฐ์ด๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์•„๋ž˜์™€ ๊ฐ™์ด ํŒจ๋”ฉ์„ ๋งŽ์ด์ค˜์„œ ์›๋ž˜ ํฌ๊ธฐ๋กœ ๋Œ๋ฆฌ๋Š” ๋ชจ์Šต

Detection

R-CNN

ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด๋ฏธ์ง€ ๋‚ด์—์„œ 2์ฒœ๊ฐœ์ •๋„์˜ REGION(Boundix box)์„ ๋ฝ‘์•„๋‚ธ๋‹ค. ๊ฐ๊ฐ์˜ ๋ฝ‘์€ Region์˜ ํฌ๊ธฐ๋ฅผ ํ†ต์ผํ•˜๊ณ  CNN์„ ํ†ตํ•ด ํŠน์ง•์„ ์–ป์€ ๋‹ค์Œ SVM์„ ์‚ฌ์šฉํ•ด์„œ ๋ถ„๋ฅ˜ํ•œ๋‹ค.

SPPNet

Spatial Pyramid Pooling

R-CNN์˜ ๊ฐ€์žฅ ํฐ ๋ฌธ์ œ์ค‘ ํ•˜๋‚˜๋Š” ์ด๋ฏธ์ง€ ์•ˆ์—์„œ ๋ฐ”์šฐ๋‹ ๋ฐ•์Šค๋ฅผ 2์ฒœ๊ฐœ๋ฅผ ๋ฝ‘์œผ๋ฉด ์ด 2์ฒœ๊ฐœ๋ฅผ ๋‹ค CNN์— ๋„ฃ์–ด์•ผ ๋˜๋Š” ๊ฒƒ. ์ด๋ฏธ์ง€ ํ•œ์žฅ์„ ์œ„ํ•ด ๋ชจ๋ธ์„ 2์ฒœ๋ฒˆ ๋Œ๋ ค์•ผํ–ˆ๋‹ค.

SPPNet์˜ ์•„์ด๋””์–ด๋Š” CNN์„ ํ•œ๋ฒˆ๋งŒ ๋Œ๋ฆฌ์ž. ๊ทธ๋ฆฌ๊ณ  ์ด๋ฏธ์ง€ ๋‚ด์—์„œ ์–ป์€ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์— ํ•ด๋‹นํ•˜๋Š” ํ”ผ์ฒ˜๋งต์„ ์–ป์ž.

  • R-CNN ์—๋Œ€ํ•ด์„œ ๋นจ๋ผ์กŒ๋‹ค.

Fast R-CNN

SPP์™€ ๋™์ผํ•œ ์ปจ์…‰์„ ๊ฐ€์กŒ๋‹ค. ๋’ท๋‹จ์˜ Neural Network๋ฅผ ํ†ตํ•ด์„œ Boudning box๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค๋Š” ์ฐจ์ด

Faster R-CNN

Bounding box๋ฅผ ๋ฝ‘์•„๋‚ด๋Š” Region Proposal๋„ ํ•™์Šต์„ ํ•˜์ž๋Š” ์•„์ด๋””์–ด. ์™œ๋ƒ๋ฉด ์ด Reigon์„ ๋ฝ‘๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž„์˜์˜ Region์„ ๋ฝ‘๊ธฐ ๋•Œ๋ฌธ.

Region Proposal Network๋Š” ๋ฝ‘์€ Region์•ˆ์— ๋ฌผ์ฒด๊ฐ€ ์žˆ์„์ง€ ์—†์„์ง€๋ฅผ ํŒ๋‹จํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ํ•„์š”ํ•œ ๊ฒƒ์ด Anchor box์ด๋‹ค

  • Anchor box๋Š” ๋ฏธ๋ฆฌ ์ •ํ•ด๋†“์€ bounding box์˜ ํฌ๊ธฐ์ด๋‹ค

์—ฌ๊ธฐ์„œ๋„ FCN์ด ํ™œ์šฉ๋œ๋‹ค.

๋„“์ด๊ฐ€ ๊ฐ๊ฐ 128, 256, 512์ธ Bounding Box์˜ ๊ฐ€๋กœ ์„ธ๋กœ ๋น„์œจ์ด 1:1, 1:2, 2:1์ด๋ฏ€๋กœ ์ด 9๊ฐœ์˜ Box๊ฐ€ ์กด์žฌํ•œ๋‹ค.

๋˜, Bounding box์˜ ์ค‘์‹ฌ์  (x, y)์™€ ๊ฐ€๋กœ์™€ ์„ธ๋กœ๊ธธ์ด w, h์˜ 4๊ฐ€์ง€ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.

Bounding box๊ฐ€ ์“ธ๋ชจ๊ฐ€ ์žˆ๋Š”์ง€ ์—†๋Š”์ง€์— ๋Œ€ํ•œ Yes or No์˜ 2๊ฐ€์ง€ ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ํ•„์š”ํ•˜๋‹ค

YOLO

์ง€๊ธˆ์€ v5๊นŒ์ง€ ๋‚˜์™”๋Š”๋ฐ, v1์„ ๋‹ค๋ฃฐ ๊ฒƒ์ž„

๊ธฐ์กด ๋ถ„๋ฅ˜๊ธฐ๋“ค๊ณผ ๋‹ค๋ฅธ์ ์€ ์ด๋ฏธ์ง€์˜ Region์„ ์ฐพ๊ณ  ์ด Region์— ํ•ด๋‹นํ•˜๋Š” ํ”ผ์ฒ˜๋งต์„ ๋ฝ‘๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ทธ๋ƒฅ ์ด๋ฏธ์ง€ ํ•œ์žฅ์„ ์ž…๋ ฅํ•˜๋ฉด ๋ฐ”๋กœ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ฌ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ๊ฐ€์กŒ๋‹ค

์ด์ „์—๋Š” Region Proposal Network๊ฐ€ ์žˆ์—ˆ๊ณ  ๊ฑฐ๊ธฐ์„œ ๋‚˜์˜ค๋Š” Bounding Box๋ฅผ ๋”ฐ๋กœ ๋ถ„๋ฅ˜ํ–ˆ๋‹ค. YOLO๋Š” ํ•œ๋ฒˆ์— ๋ถ„๋ฅ˜ํ•œ๋‹ค.

YOLO๋Š” ์ด๋ฏธ์ง€๊ฐ€ ๋“ค์–ด์˜ค๋ฉด SxS์˜ ๊ฒฉ์ž๋กœ ์ด๋ฏธ์ง€๋ฅผ ๋‚˜๋ˆ„๊ฒŒ ๋œ๋‹ค. ์ฐพ๊ณ ์ž ํ•˜๋Š” ๋ฌผ์ฒด์˜ ์ค‘์•™์ด ๊ทธ๋ฆฌ๋“œ ์•ˆ์— ๋“ค์–ด๊ฐ€๋ฉด ๊ทธ ๊ทธ๋ฆฌ๋“œ์…€์ด ํ•ด๋‹น ๋ฌผ์ฒด์˜ Bounding box์™€ Class๊นŒ์ง€ ๊ฐ™์ด ์˜ˆ์ธกํ•ด์ฃผ๊ฒŒ๋œ๋‹ค.

์ด์ „์—๋Š” Anchor box๊ฐ€ ์žˆ์—ˆ๋Š”๋ฐ ์—ฌ๊ธฐ์„œ๋Š” ์—†๊ณ  ๋‹จ์ง€ Bounding box์˜ ๊ฐœ์ˆ˜๋งŒ์„ ๋ฏธ๋ฆฌ ์ •ํ•ด์ฃผ๊ฒŒ ๋œ๋‹ค. (๋…ผ๋ฌธ์—์„œ๋Š” 5๊ฐœ) ๊ทธ๋Ÿฌ๋ฉด ๋ชจ๋ธ์€ n๊ฐœ์˜ bounding box์˜ (x, y, w, h)๋ฅผ ์ฐพ๊ฒŒ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์‹ค์ œ๋กœ ์“ธ๋ชจ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ์—ฌ๋ถ€๋„ ๋ฐ˜ํ™˜ํ•œ๋‹ค.

๊ฒฐ๊ตญ S*S*(B*N+C) ์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋ฐ˜ํ™˜๋œ๋‹ค.

  • S*S : ๊ทธ๋ฆฌ๋“œ์˜ ๊ฐœ์ˆ˜

  • B*N : ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค(x, y, w, h, confidence)์™€ ๋ฏธ๋ฆฌ ์ •์˜ํ•œ ๊ฐœ์ˆ˜

  • C : Number of Classes