๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • [AI ์Šค์ฟจ 1๊ธฐ] 10์ฃผ์ฐจ DAY 4
  • NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ I
  • NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ II
  • NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ III
  • NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ IV

Was this helpful?

  1. 2021 TIL
  2. FEB

18 Thu

[AI ์Šค์ฟจ 1๊ธฐ] 10์ฃผ์ฐจ DAY 4

NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ I

๋‹จ์–ด์˜ ์˜๋ฏธ๋ฅผ ์–ด๋–ป๊ฒŒ ๋‚˜ํƒ€๋‚ผ ๊ฒƒ์ธ๊ฐ€?

  • ๊ธ€์ž์˜ ๋‚˜์—ด

  • One hot encoding

  • ์ข‹์€ ํ‘œํ˜„๋ฐฉ์‹ : ๋‹จ์–ด๊ด€์˜ ๊ด€๊ณ„๋ฅผ ์ž˜ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์–ด์•ผํ•จ

๋‹จ์–ด์˜ ์˜๋ฏธ

  • ์–ด๊ทผ(lemma)

  • ์˜๋ฏธ(sense)

  • ex) mouse

    • ์ฅ

    • ์ปดํ“จํ„ฐ ์žฅ์น˜

  • ex) mouse, mice

    • ํ•˜๋‚˜์˜ ์–ด๊ทผ์„ ๊ฐ€์ง€๊ณ ์žˆ์Œ

  • ์ปดํ“จํ„ฐ์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฌ์šด ํ˜•ํƒœ๊ฐ€ ์•„๋‹˜

๋™์˜์–ด

  • ๋™์˜์–ด๊ฐ€ ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‚ฌ์ „์ ์œผ๋กœ ๊ฐ™์€ ์˜๋ฏธ

  • ๋ฌธ์žฅ ์†์— ๋‹จ์–ด๋ฅผ ๋‹ค๋ฅธ ๋‹จ์–ด๋กœ ๋Œ€์ฒด ํ–ˆ์„ ๋•Œ ์˜๋ฏธ๊ฐ€ ๋‹ฌ๋ผ์ง€์ง€์•Š๊ณ  ์ž์—ฐ์Šค๋Ÿฝ๋‹ค๋ฉด ๋™์˜์–ด

  • ๊ทธ๋ ‡์ง€๋งŒ ํ•ญ์ƒ ๊ทธ ๋‹จ์–ด๋กœ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋‹ค

  • ex) H2O - water

์œ ์‚ฌ์„ฑ

  • ์œ ์‚ฌํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง

  • ex) car - bicycle, cow - horse

  • ๊ธฐ๊ณ„์ ์œผ๋กœ ์œ ์‚ฌ๋„๋ฅผ ๋น„๊ตํ•˜๋Š” ๊ฒƒ์€ ์‰ฝ์ง€ ์•Š์Œ

์—ฐ๊ด€์„ฑ

  • ๋‹จ์–ด๋“ค์€ ์˜๋ฏธ์˜ ์œ ์‚ฌ์„ฑ ์™ธ์—๋„ ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์œผ๋กœ ์—ฐ๊ด€๋  ์ˆ˜ ์žˆ์Œ

  • Semantic Field

    • ํŠน์ •ํ•œ ์ฃผ์ œ๋‚˜ ์˜์—ญ์„ ๊ณต์œ ํ•˜๋Š” ๋‹จ์–ด๋“ค

    • ex) hospital : surgeon, scalpel, nurse

    • ex) restaurants : waiter, menu, plate

  • Semantic Frame

    • ํŠน์ • ํ–‰์œ„์— ์ฐธ์—ฌํ•˜๋Š” ์ฃผ์ฒด๋“ค์˜ ์—ญํ• ์— ๊ด€ํ•œ ๋‹จ์–ด๋“ค

    • ex) ์ƒ๊ฑฐ๋ž˜ ํ–‰์œ„์— ์ฐธ์—ฌํ•˜๋Š” ์ฃผ์ฒด๋“ค : buy, sell, pay

๋ฒกํ„ฐ๋กœ ์˜๋ฏธ ํ‘œํ˜„ํ•˜๊ธฐ

  • ๋‹จ์–ด๋“ค์€ ์ฃผ๋ณ€์˜ ํ™˜๊ฒฝ์— ์˜ํ•ด ์˜๋ฏธ๊ฐ€ ๊ฒฐ์ •๋œ๋‹ค

    • ์ฃผ๋ณ€์˜ ํ™˜๊ฒฝ : ์ฃผ๋ณ€์˜ ๋‹จ์–ด๋“ค์˜ ๋ถ„ํฌ

  • ๋งŒ์•ฝ A์™€ B๊ฐ€ ๋™์ผํ•œ ์ฃผ๋ณ€ ๋‹จ์–ด๋“ค์˜ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋ฉด ๋‘ ๋‹จ์–ด๋Š” ์œ ์‚ฌ์–ด์ด๋‹ค.

  • ๋‹จ์–ด์˜ ์˜๋ฏธ๋ฅผ ๋ถ„ํฌ์  ์œ ์‚ฌ์„ฑ์„ ์‚ฌ์šฉํ•ด ํ‘œํ˜„ํ•˜๊ณ ์ž ํ•œ๋‹ค.

  • ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„๋œ ๋‹จ์–ด๋ฅผ ์ž„๋ฒ ๋”ฉ์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. ๋ณดํ†ต์€ ๋ฐ€์ง‘๋ฒกํ„ฐ์ธ ๊ฒฝ์šฐ๋ฅผ ์ž„๋ฒ ๋”ฉ์ด๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค.

    • ๋ฐ€์ง‘๋˜์—ˆ๋‹ค๋Š” ๋œป์€ ๊ฐ’์ด 0์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฒƒ

    • ๋ฐ˜๋Œ€๋กœ ํฌ์†Œ๋ฒกํ„ฐ๋Š” ๋Œ€๋ถ€๋ถ„์˜ ๋ฒกํ„ฐ๊ฐ€ 0์ด๋ž€ ๋œป

  • ์ตœ๊ทผ NLP ๋ฐฉ๋ฒ•๋“ค์€ ๋ชจ๋‘ ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•ด์„œ ๋‹จ์–ด์˜ ์˜๋ฏธ๋ฅผ ํ‘œํ˜„ํ•œ๋‹ค.

์™œ ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋Š”๊ฐ€?

  • ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ

    • ๊ฐ ์†์„ฑ์€ ํ•œ ๋‹จ์–ด์˜ ์กด์žฌ ์œ ๋ฌด

    • ํ•™์Šต๋ฐ์ดํ„ฐ์™€ ํ…Œ์ŠคํŠธ๋ฐ์ดํ„ฐ์— ๋™์ผํ•œ ๋‹จ์–ด๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์œผ๋ฉด ์˜ˆ์ธก ๊ฒฐ๊ณผ๊ฐ€ ์ข‹์ง€ ๋ชปํ•จ

  • ์ž„๋ฒ ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ

    • ๊ฐ ์†์„ฑ์€ ๋‹จ์–ด์ž„๋ฒ ๋”ฉ ๋ฒกํ„ฐ

    • ๋‹จ์–ด์˜ ์กด์žฌ์œ ๋ฌด๋ณด๋‹ค ๋ฒกํ„ฐ์˜ ์†์„ฑ์ด ์ค‘์š”ํ•˜๋‹ค

    • ํ•™์Šต ๋ฐ์ดํ„ฐ

      • GOOD : [0.9, 0.1, -0.5]

      • NICE : [1.1, 0.9, 1.2]

      • ์ฒซ๋ฒˆ์งธ ๋ฒกํ„ฐ์˜ ๊ฐ’์ด ๋‘˜ ๋‹ค ๋†’๋‹ค = > ์ข‹๋‹ค๋ผ๋Š” ํด๋ž˜์Šค C1๊ณผ ๊ด€๋ จ์ด ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Œ

    • ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ

      • TERRIFIC : [0.95, -0.2, 0.1]

      • ํ•™์Šต ๋ฐ์ดํ„ฐ์—๋Š” ํ•œ๋ฒˆ๋„ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์€ ๋‹จ์–ด์ผ ๊ฒฝ์šฐ, ์ด ๋‹จ์–ด์˜ ์˜๋ฏธ๊ฐ€ ๊ธ์ •์ ์ธ์ง€ ๋ถ€์ •์ ์ธ์ง€๋Š” ์•Œ ์ˆ˜ ์—†์ง€๋งŒ ์ž„๋ฒ ๋”ฉ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” C1์˜ ๊ฐ’์ด 1์— ๊ฐ€๊นŒ์šฐ๋ฏ€๋กœ ์ข‹์€ ์˜๋ฏธ๋ผ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Œ

์ž„๋ฒ ๋”ฉ์˜ ์ข…๋ฅ˜

  • ํฌ์†Œ๋ฒกํ„ฐ

    • tf-idf

    • Vector propagation : ๊ฒ€์ƒ‰์—”์ง„์„ ์œ„ํ•œ ์งˆ์˜์–ด, ๋ฌธ์„œ ํ‘œํ˜„

  • ๋ฐ€์ง‘๋ฒกํ„ฐ

    • Word2vec : ํ•™์Šต์ด ๊ฐ„ํŽธํ•จ

    • Glove

NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ II

Term-document ํ–‰๋ ฌ

  • ๊ฐ ๋ฌธ์„œ๋Š” ๋‹จ์–ด๋“ค์˜ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„๋œ๋‹ค

๋ฒกํ„ฐ์˜ ์œ ์‚ฌ๋„ ๊ณ„์‚ฐํ•˜๊ธฐ

TF-IDF

  • ๋‹จ์–ด์˜ ๋นˆ๋„์ˆ˜๋ฅผ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•  ๋•Œ์˜ ๋ฌธ์ œ์ 

    • the, it, they๋“ฑ์˜ ๋‹จ์–ด๋“ค์€ ์˜๋ฏธ๋ฅผ ๊ตฌ๋ณ„ํ•˜๋Š”๋ฐ ๋„์›€์ด ๋˜์ง€ ์•Š๋Š”๋‹ค

  • tf-idf

    • ๊ธฐ์กด ๋นˆ๋„์ˆ˜๋งŒ์„ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์—์„œ ๋ณด์ •์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•

    • ๋ฌธ์„œ d๋‚ด์— ๋‹จ์–ด t์˜ ์ƒˆ๋กœ์šด ๊ฐ€์ค‘์น˜ ๊ฐ’์„ ๊ณ„์‚ฐํ•œ๋‹ค

  • ๋ฌธ์„œ์— ๋‚˜์˜ค๋Š” ๋‹จ์–ด์˜ ๋นˆ๋„์ˆ˜

  • ๊ทผ๋ฐ ์ด๊ฒƒ์„ ๊ทธ๋Œ€๋กœ ์‚ฌ์šฉํ•˜๊ธฐ๋ณด๋‹ค๋Š” ๋กœ๊ทธ๊ฐ’์„ ์ ์šฉํ•ด์„œ ์ •๊ทœํ™”(๊ฐ’์ด ๋„ˆ๋ฌด ํฌ๊ฒŒ ์˜ฌ๋ผ๊ฐ€๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€)

  • +1์€ ๋ฌดํ•œ๋Œ€๋กœ ์˜ฌ๋ผ๊ฐ€๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€

  • df_t = ๋‹จ์–ด t๋ฅผ ํฌํ•จํ•˜๋Š” ๋ฌธ์„œ๋“ค์˜ ๊ฐœ์ˆ˜

  • idf_t = df_t ์˜ ์—ญ์ˆ˜

tf-idf vector

  • ๊ธธ๋‹ค : 20,000 ~ 50,000

  • ํฌ์†Œ์„ฑ (๋Œ€๋ถ€๋ถ„์˜ ์›์†Œ๊ฐ€ 0)

Word2vec, Glove

  • ์งง๋‹ค : 50 ~ 1,000

  • ๋ฐ€์ง‘์„ฑ (๋Œ€๋ถ€๋ถ„์˜ ์›์†Œ๊ฐ€ 0์ด ์•„๋‹˜)

Dense Vectors

  • dense๊ฐ€ ์„ ํ˜ธ๋˜๋Š” ์ด์œ 

    • ๋” ์ ์€ ๊ฐœ์ˆ˜์˜ ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฐ˜

    • ๋” ๋‚˜์€ ์ผ๋ฐ˜ํ™” ๋Šฅ๋ ฅ

    • ๋™์˜์–ด์™€ ์œ ์‚ฌ์–ด๋ฅผ ๋” ์ž˜ ํ‘œํ˜„

NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ III

Word2vec

  • ์ฃผ์–ด์ง„ ๋‹จ์–ด w๋ฅผ ์ธ์ ‘ํ•œ ๋‹จ์–ด๋“ค์˜ ๋นˆ๋„์ˆ˜๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ๋Œ€์‹ , ์ฃผ๋ณ€ ๋‹จ์–ด๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ถ„๋ฅ˜๊ธฐ๋ฅผ ํ•™์Šตํ•˜์ž!

    • ๋‹จ์–ด w๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ๋‹จ์–ด c๊ฐ€ ์ฃผ๋ณ€์— ๋‚˜ํƒ€๋‚  ํ™•๋ฅ ์€?

  • ๋ชฉํ‘œ๋Š” ๋ชจ๋ธ์˜ ์ตœ์ข…์˜ˆ์ธก๊ฐ’์ด ์•„๋‹ˆ๋ผ ๋ชจ๋ธ ๋‚ด ๋‹จ์–ด w์˜ ๊ฐ€์ค‘์น˜๋ฒกํ„ฐ

  • Self-supervision

    • ์ด ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉํ‘œ๊ฐ’์€ ์ด๋ฏธ ๋ฐ์ดํ„ฐ๋‚ด์— ์กด์žฌ

    • ์‚ฌ๋žŒ์ด ์ˆ˜๋™์œผ๋กœ ๋ ˆ์ด๋ธ”์„ ์ƒ์„ฑํ•  ํ•„์š”๊ฐ€ ์—†์Œ

Skip-Gram

  • ํ•œ ๋‹จ์–ด๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ๊ทธ ์ฃผ๋ณ€ ๋‹จ์–ด๋ฅผ ์˜ˆ์ธกํ•  ํ™•๋ฅ ์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋ชจ๋ธ

  • ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ™•๋ฅ ๋ชจ๋ธ์„ ๊ฐ€์ •ํ•œ๋‹ค

  • ๋ฌธ์ œ์ ์€ ๋ถ„๋ชจ ๊ณ„์‚ฐ๋Ÿ‰์ด ๋งŽ๋‹ค

  • ํ•ด๊ฒฐ์ฑ…

    • Noise-constrastive estimation : Normalization constant๋ฅผ ํ•˜๋‚˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ํ•™์Šตํ•œ๋‹ค. ์ด์ง„ ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ํ•ด๋‹นํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ชฉํ‘œํ•จ์ˆ˜๋ฅผ ์ตœ์ ํ™” ์‹œํ‚จ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•ด์„œ ์–ป์–ด์ง€๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์ด ์›๋ž˜ likelihood์˜ ์ตœ์ ํ•ด๋ฅผ ๊ทผ์‚ฌํ•œ๋‹ค๋Š” ๊ฒƒ์ด ์ฆ๋ช…๋œ๋‹ค.

    • ์ด๊ฒƒ์„ ์กฐ๊ธˆ ๋” ๋‹จ์ˆœํ™”์‹œํ‚ค๋ฉด negative sampling์ด ๋œ๋‹ค.

    • Word2vec์€ negative sampling์„ ์‚ฌ์šฉํ•œ๋‹ค.

NLP : ๋‹จ์–ด ์ž„๋ฒ ๋”ฉ IV

Word2vec ํ•™์Šต๊ณผ์ • ์š”์•ฝ

  • |V| ๊ฐœ์˜ d์ฐจ์› ์ž„๋ฒ ๋”ฉ์„ ๋žœ๋คํ•˜๊ฒŒ ์ดˆ๊ธฐํ™”

  • ์ฃผ๋ณ€ ๋‹จ์–ด๋“ค์˜ ์Œ์„ positive example๋กœ ์ƒ์„ฑ

  • ๋นˆ๋„์ˆ˜์— ์˜ํ•ด ์ถ”์ถœ๋œ ๋‹จ์–ด๋“ค์˜ ์Œ์„ negative example๋กœ ์ƒ์„ฑ

  • ์œ„ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ๋ถ„๋ฅ˜๊ธฐ ํ•™์Šต

  • ํ•™์Šต๋œ ์ž„๋ฒ ๋”ฉ w๊ฐ€ ์ตœ์ข…๊ฒฐ๊ณผ๋ฌผ

Previous19 FriNext17 Wed

Last updated 4 years ago

Was this helpful?