๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • 4. Long Short-Term Memory (LSTM) | Gated Recurrent Unit (GRU)
  • Long Short-Term Memory (LSTM)
  • Gated Recurrent Unit (GRU)
  • ์‹ค์Šต
  • ํ•„์š” ํŒจํ‚ค์ง€ import
  • ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ
  • LSTM ์‚ฌ์šฉ
  • GPU ์‚ฌ์šฉ
  • ์–‘๋ฐฉํ–ฅ ๋ฐ ์—ฌ๋Ÿฌ layer ์‚ฌ์šฉ

Was this helpful?

  1. TIL : ML
  2. Boostcamp 2st
  3. [U]Stage-NLP

(04๊ฐ•) LSTM and GRU

210907

Previous(05๊ฐ•) Sequence to Sequence with AttentionNext(03๊ฐ•) Recurrent Neural Network and Language Modeling

Last updated 3 years ago

Was this helpful?

4. Long Short-Term Memory (LSTM) | Gated Recurrent Unit (GRU)

Long Short-Term Memory (LSTM)

Vanila Model์˜ Gradient Exploding/Vanishing ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  Long Term Dependency ๋ฌธ์ œ๋ฅผ ๊ฐœ์„ ํ•œ ๋ฌธ์ œ์ด๋‹ค.

๊ธฐ์กด์˜ RNN ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

ht=fw(xt,ย htโˆ’1) h_t = f_w(x_t,\ h_{t-1}) htโ€‹=fwโ€‹(xtโ€‹,ย htโˆ’1โ€‹)

LSTM์—๋Š” Cell state๋ผ๋Š” ๊ฐ’์ด ์ถ”๊ฐ€๋˜๋ฉฐ ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

{Ct,ย ht}=LSTM(xt,ย Ctโˆ’1,ย htโˆ’1) \{C_t,\ h_t\} = LSTM(x_t,\ C_{t-1},\ h_{t-1}) {Ctโ€‹,ย htโ€‹}=LSTM(xtโ€‹,ย Ctโˆ’1โ€‹,ย htโˆ’1โ€‹)

Cell state๊ฐ€ hidden state๋ณด๋‹ค ์ข€ ๋” ์™„์„ฑ๋œ, ํ•„์š”๋กœ ํ•˜๋Š” ์ •๋ณด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฒกํ„ฐ์ด๋ฉฐ ์ด cell state ๋ฒกํ„ฐ๋ฅผ ํ•œ๋ฒˆ ๋” ๊ฐ€๊ณตํ•ด์„œ ํ•ด๋‹น time step์—์„œ ๋…ธ์ถœํ•  ํ•„์š”๊ฐ€ ์žˆ๋Š” ์ •๋ณด๋ฅผ ํ•„ํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฒกํ„ฐ๋กœ๋„ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค.

cell state๋ฅผ ํ•œ๋ฒˆ ๋” ๊ฐ€๊ณตํ•œ hidden state ๋ฒกํ„ฐ๋Š” ํ˜„์žฌ timestep ์—์„œ ์˜ˆ์ธก๊ฐ’์„ ๊ณ„์‚ฐํ•˜๋Š” output layer์˜ ์ž…๋ ฅ๋ฒกํ„ฐ๋กœ ์‚ฌ์šฉํ•œ๋‹ค.

  • ์—ฌ๊ธฐ์„œ x๋Š” x_t ์ด๊ณ  h๋Š” h_(t-1) ์ด๋‹ค.

Forget gate

์ด์ „ ํƒ€์ž„์Šคํ…์—์„œ ์–ป์€ ์ •๋ณด ์ค‘ ์ผ๋ถ€๋งŒ์„ ๋ฐ˜์˜ํ•˜๊ฒ ๋‹ค.

= ์ด์ „ ํƒ€์ž„์Šคํ…์—์„œ ์–ป์€ ์ •๋ณด ์ผ๋ถ€๋ฅผ ๊นŒ๋จน๊ฒ ๋‹ค = forget

Input gate

์ด๋ฒˆ ์…€์—์„œ ์–ป์€ C tilda ๊ฐ’์„ input gate์™€ ๊ณฑํ•ด์ฃผ๋Š” ์ด์œ ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • ํ•œ๋ฒˆ์˜ ์„ ํ˜•๋ณ€ํ™˜๋งŒ์œผ๋กœ Ctโˆ’1 C_{t-1} Ctโˆ’1โ€‹์— ๋”ํ•ด์ฃผ๋Š” ์ •๋ณด๋ฅผ ๋งŒ๋“ค๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋”ํ•ด์ฃผ๋Š” ์ •๋ณด๋ฅผ ์ผ๋‹จ ํฌ๊ฒŒ ๋งŒ๋“  ํ›„์— ๊ฐ ์ฐจ์›๋ณ„๋กœ ํŠน์ • ๋น„์œจ๋งŒํผ ๋œ์–ด๋‚ด์„œ ๋”ํ•ด์ฃผ๋Š” ์ •๋ณด๋ฅผ ๋งŒ๋“ค๊ฒ ๋‹ค ๋ผ๋Š” ๋ชฉ์ ์ด๋‹ค.

  • ์ด ๋•Œ, ๋”ํ•ด์ฃผ๋Š” ์ •๋ณด๋ณด๋‹ค ํฌ๊ฒŒ ๋งŒ๋“  ์ •๋ณด๊ฐ€ C tilda ์ด๋ฉฐ ํŠน์ • ๋น„์œจ๋งŒํผ ๋œ์–ด๋‚ด๋Š” ์ž‘์—…์ด input gate์™€ ๊ณฑํ•ด์ฃผ๋Š” ์ž‘์—…์ด๋‹ค.

Output gate

  • "He said, 'I love you.' " ๋ผ๋Š” ๋ฌธ์žฅ์ด ์žˆ๋‹ค๊ณ  ํ•˜์ž. ํ˜„์žฌ sequence๊ฐ€ love y ๊นŒ์ง€ ๋“ค์–ด์™”๊ณ  y๋‹ค์Œ์— o๋ฅผ ์ถœ๋ ฅ์œผ๋กœ ์ค˜์•ผ ํ•  ์ฐจ๋ก€์ด๋‹ค. ์ด ๋•Œ y์˜ ์ž…์žฅ์—์„œ๋Š” ๋‹น์žฅ์˜ ์ž‘์€ ๋”ฐ์˜ดํ‘œ๊ฐ€ ์—ด๋ฆฐ ์‚ฌ์‹ค์€ ์ค‘์š”ํ•˜์ง€ ์•Š์ง€๋งŒ, ๊ณ„์† ์ „๋‹ฌํ•ด์ค˜์•ผํ•˜๋Š” ์ •๋ณด์ด๋‹ค. ๊ทธ๋ž˜์„œ Ct์˜ activate function์„ ๊ฑฐ์นœ๊ฐ’์„ o_t์— ๊ณฑํ•ด์ฃผ๋Š” ๊ฒƒ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค.

Gated Recurrent Unit (GRU)

LSTM์˜ ๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ๊ฒฝ๋Ÿ‰ํ™”ํ•ด์„œ ์ ์€ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰๊ณผ ๋น ๋ฅธ ๊ณ„์‚ฐ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ๋งŒ๋“  ๋ชจ๋ธ์ด๋‹ค. ๊ฐ€์žฅ ํฐ ํŠน์ง•์€ LSTM์€ Cell๊ณผ Hidden์ด ์žˆ๋Š” ๋ฐ˜๋ฉด์— GRU์—์„œ๋Š” Hidden๋งŒ ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ GRU์˜ ๋™์ž‘์›๋ฆฌ๋Š” LSTM๊ณผ ๊ต‰์žฅํžˆ ๋™์ผํ•˜๋‹ค.

  • LSTM์˜ Cell์˜ ์—ญํ• ์„ GRU์—์„œ๋Š” Hidden์ด ํ•ด์ฃผ๊ณ  ์žˆ๋‹ค๊ณ  ๋ณด๋ฉด๋œ๋‹ค.

  • GRU ์—์„œ๋Š” Input Gate๋งŒ์„ ์‚ฌ์šฉํ•˜๋ฉฐ Forget Gate ์ž๋ฆฌ์—๋Š” 1 - Input Gate ๊ฐ’์„ ์‚ฌ์šฉํ•œ๋‹ค.

์‹ค์Šต

ํ•„์š” ํŒจํ‚ค์ง€ import

from tqdm import tqdm
from torch import nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

import torch

๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ

vocab_size = 100
pad_id = 0

data = [
  [85,14,80,34,99,20,31,65,53,86,3,58,30,4,11,6,50,71,74,13],
  [62,76,79,66,32],
  [93,77,16,67,46,74,24,70],
  [19,83,88,22,57,40,75,82,4,46],
  [70,28,30,24,76,84,92,76,77,51,7,20,82,94,57],
  [58,13,40,61,88,18,92,89,8,14,61,67,49,59,45,12,47,5],
  [22,5,21,84,39,6,9,84,36,59,32,30,69,70,82,56,1],
  [94,21,79,24,3,86],
  [80,80,33,63,34,63],
  [87,32,79,65,2,96,43,80,85,20,41,52,95,50,35,96,24,80]
]

max_len = len(max(data, key=len))

valid_lens = []
for i, seq in enumerate(tqdm(data)):
  valid_lens.append(len(seq))
  if len(seq) < max_len:
    data[i] = seq + [pad_id] * (max_len - len(seq))
    
# B: batch size, L: maximum sequence length
batch = torch.LongTensor(data)  # (B, L)
batch_lens = torch.LongTensor(valid_lens)  # (B)

batch_lens, sorted_idx = batch_lens.sort(descending=True)
batch = batch[sorted_idx]

LSTM ์‚ฌ์šฉ

LSTM์€ Cell state๊ฐ€ ์ถ”๊ฐ€๋œ๋‹ค. shape๋Š” hidden state์™€ ๋™์ผํ•˜๋‹ค.

embedding_size = 256
hidden_size = 512
num_layers = 1
num_dirs = 1

embedding = nn.Embedding(vocab_size, embedding_size)
lstm = nn.LSTM(
    input_size=embedding_size,
    hidden_size=hidden_size,
    num_layers=num_layers,
    bidirectional=True if num_dirs > 1 else False
)

h_0 = torch.zeros((num_layers * num_dirs, batch.shape[0], hidden_size))  # (num_layers * num_dirs, B, d_h)
c_0 = torch.zeros((num_layers * num_dirs, batch.shape[0], hidden_size))  # (num_layers * num_dirs, B, d_h)
  • hidden state์™€ cell state๋Š” 0์œผ๋กœ ์ดˆ๊ธฐํ™”ํ•œ๋‹ค.

# d_w: word embedding size
batch_emb = embedding(batch)  # (B, L, d_w)

packed_batch = pack_padded_sequence(batch_emb.transpose(0, 1), batch_lens)

packed_outputs, (h_n, c_n) = lstm(packed_batch, (h_0, c_0))
print(packed_outputs)
print(packed_outputs[0].shape)
print(h_n.shape)
print(c_n.shape)
PackedSequence(data=tensor([[-0.0690,  0.1176, -0.0184,  ..., -0.0339, -0.0347,  0.1103],
        [-0.1626,  0.0038,  0.0090,  ..., -0.1385, -0.0806,  0.0635],
        [-0.0977,  0.1470, -0.0678,  ...,  0.0203,  0.0201,  0.0175],
        ...,
        [-0.1911, -0.1925, -0.0827,  ...,  0.0491,  0.0302, -0.0149],
        [ 0.0803, -0.0229, -0.0772,  ..., -0.0706, -0.1711, -0.2128],
        [ 0.1861, -0.1572, -0.1024,  ..., -0.0090, -0.2621, -0.2803]],
       grad_fn=<CatBackward>), batch_sizes=tensor([10, 10, 10, 10, 10,  9,  7,  7,  6,  6,  5,  5,  5,  5,  5,  4,  4,  3,
         1,  1]), sorted_indices=None, unsorted_indices=None)
torch.Size([123, 512])
torch.Size([1, 10, 512])
torch.Size([1, 10, 512])
  • hidden state์™€ cell state์˜ ํฌ๊ธฐ๊ฐ€ ๊ฐ™์€๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.

  • packed_outputs ์˜ ์‚ฌ์ด์ฆˆ๊ฐ€ 123์ธ ์ด์œ ๋ฅผ ์•„๋Š”๊ฐ€? ์‚ฌ์‹ค์€ 200์ด์–ด์•ผ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ 0์˜ ๊ฐœ์ˆ˜๋ฅผ ๋นผ๋ฉด 123์ด๋œ๋‹ค!

outputs, output_lens = pad_packed_sequence(packed_outputs)
print(outputs.shape)
print(output_lens)
torch.Size([20, 10, 512])
tensor([20, 18, 18, 17, 15, 10,  8,  6,  6,  5])

GPU ์‚ฌ์šฉ

GPU๋Š” Cell state๊ฐ€ ์—†๋‹ค. ๊ทธ ์™ธ์—๋Š” ๋™์ผํ•˜๋‹ค.

gru = nn.GRU(
    input_size=embedding_size,
    hidden_size=hidden_size,
    num_layers=num_layers,
    bidirectional=True if num_dirs > 1 else False
)

output_layer = nn.Linear(hidden_size, vocab_size)

input_id = batch.transpose(0, 1)[0, :]  # (B)
hidden = torch.zeros((num_layers * num_dirs, batch.shape[0], hidden_size))  # (1, B, d_h)

Teacher forcing ์—†์ด ์ด์ „์— ์–ป์€ ๊ฒฐ๊ณผ๋ฅผ ๋‹ค์Œ input์œผ๋กœ ์ด์šฉํ•œ๋‹ค.

  • t-1๋ฒˆ์งธ์˜ ๋””์ฝ”๋” ์…€์ด ์˜ˆ์ธกํ•œ ๊ฐ’์„ t๋ฒˆ์งธ ๋””์ฝ”๋”์˜ ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์–ด์ค€๋‹ค. t-1๋ฒˆ์งธ์—์„œ ์ •ํ™•ํ•œ ์˜ˆ์ธก์ด ์ด๋ฃจ์–ด์ง„๋‹ค๋ฉด ์—„์ฒญ๋‚œ ์žฅ์ ์„ ๊ฐ€์ง€๋Š” ๊ตฌ์กฐ์ง€๋งŒ, ์ž˜๋ชป๋œ ์˜ˆ์ธก ์•ž์—์„œ๋Š” ์—„์ฒญ๋‚œ ๋‹จ์ ์ด ๋˜์–ด๋ฒ„๋ฆฐ๋‹ค.

  • ๋‹ค์Œ์€ ๋‹จ์ ์ด ๋˜์–ด๋ฒ„๋ฆฐ RNN์˜ ์ž˜๋ชป๋œ ์˜ˆ์ธก์ด ์„ ํ–‰๋œ ๊ฒฝ์šฐ

  • ์ด๋Ÿฌํ•œ ๋‹จ์ ์€ ํ•™์Šต ์ดˆ๊ธฐ์— ํ•™์Šต ์†๋„ ์ €ํ•˜์˜ ์š”์ธ์ด ๋˜๋ฉฐ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‚˜์˜จ ๊ธฐ๋ฒ•์ด ํ‹ฐ์ณํฌ์‹ฑ์ด๋‹ค.

  • ์œ„์™€ ๊ฐ™์ด ์ž…๋ ฅ์„ Ground Truth๋กœ ๋„ฃ์–ด์ฃผ๊ฒŒ ๋˜๋ฉด, ํ•™์Šต์‹œ ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋˜์–ด ์ดˆ๊ธฐ ํ•™์Šต ์†๋„๋ฅผ ๋น ๋ฅด๊ฒŒ ์˜ฌ๋ฆด ์ˆ˜ ์žˆ๋‹ค.

  • ๊ทธ๋Ÿฌ๋‚˜ ๋‹จ์ ์œผ๋กœ๋Š” ๋…ธ์ถœ ํŽธํ–ฅ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ์ถ”๋ก  ๊ณผ์ •์—์„œ๋Š” Ground Truth๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ํ•™์Šต๊ณผ ์ถ”๋ก  ๋‹จ๊ณ„์—์„œ์˜ ์ฐจ์ด๊ฐ€ ์กด์žฌํ•˜๊ฒŒ ๋˜๊ณ  ์ด๋Š” ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ๊ณผ ์•ˆ์ •์„ฑ์„ ๋–จ์–ด๋œจ๋ฆด ์ˆ˜ ์žˆ๋‹ค.

  • ๋‹ค๋งŒ ๋…ธ์ถœ ํŽธํ–ฅ ๋ฌธ์ œ๊ฐ€ ์ƒ๊ฐ๋งŒํผ ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์—ฐ๊ตฌ๊ฒฐ๊ณผ๊ฐ€ ์žˆ๋‹ค.

(T. He, J. Zhang, Z. Zhou, and J. Glass. Quantifying Exposure Bias for Neural Language Generation (2019), arXiv.)

for t in range(max_len):
  input_emb = embedding(input_id).unsqueeze(0)  # (1, B, d_w)
  output, hidden = gru(input_emb, hidden)  # output: (1, B, d_h), hidden: (1, B, d_h)

  # V: vocab size
  output = output_layer(output)  # (1, B, V)
  probs, top_id = torch.max(output, dim=-1)  # probs: (1, B), top_id: (1, B)

  print("*" * 50)
  print(f"Time step: {t}")
  print(output.shape)
  print(probs.shape)
  print(top_id.shape)

  input_id = top_id.squeeze(0)  # (B)

์–‘๋ฐฉํ–ฅ ๋ฐ ์—ฌ๋Ÿฌ layer ์‚ฌ์šฉ

num_layers = 2
num_dirs = 2
dropout=0.1

gru = nn.GRU(
    input_size=embedding_size,
    hidden_size=hidden_size,
    num_layers=num_layers,
    dropout=dropout,
    bidirectional=True if num_dirs > 1 else False
)
  • ์—ฌ๊ธฐ์„œ๋Š” 2๊ฐœ์˜ ๋ ˆ์ด์–ด ๋ฐ ์–‘๋ฐฉํ–ฅ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๊ทธ๋ž˜์„œ hidden state์˜ ํฌ๊ธฐ๋„ (4, Batchsize, hidden dimension) ์ด ๋œ๋‹ค.

# d_w: word embedding size, num_layers: layer์˜ ๊ฐœ์ˆ˜, num_dirs: ๋ฐฉํ–ฅ์˜ ๊ฐœ์ˆ˜
batch_emb = embedding(batch)  # (B, L, d_w)
h_0 = torch.zeros((num_layers * num_dirs, batch.shape[0], hidden_size))  # (num_layers * num_dirs, B, d_h) = (4, B, d_h)

packed_batch = pack_padded_sequence(batch_emb.transpose(0, 1), batch_lens)

packed_outputs, h_n = gru(packed_batch, h_0)
print(packed_outputs)
print(packed_outputs[0].shape)
print(h_n.shape)
PackedSequence(data=tensor([[-0.0214, -0.0892,  0.0404,  ..., -0.2017,  0.0148,  0.1133],
        [-0.1170,  0.0341,  0.0420,  ..., -0.1387,  0.1696,  0.2475],
        [-0.1272, -0.1075,  0.0054,  ..., -0.0152, -0.0856, -0.0097],
        ...,
        [ 0.2953,  0.1022, -0.0146,  ...,  0.0467, -0.0049, -0.1354],
        [ 0.1570, -0.1757, -0.1698,  ...,  0.0369, -0.0073,  0.0044],
        [ 0.0541,  0.1023, -0.1941,  ...,  0.0117,  0.0276,  0.0636]],
       grad_fn=<CatBackward>), batch_sizes=tensor([10, 10, 10, 10, 10,  9,  7,  7,  6,  6,  5,  5,  5,  5,  5,  4,  4,  3,
         1,  1]), sorted_indices=None, unsorted_indices=None)
torch.Size([123, 1024])
torch.Size([4, 10, 512])
  • ์‹ค์ œ๋กœ ํžˆ๋“  ์Šคํ…Œ์ดํŠธ์˜ ํฌ๊ธฐ๊ฐ€ 4๋กœ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, packed_outputs ์—ญ์‹œ 256๊ฐœ๊ฐ€ ์•„๋‹ˆ๋ผ 1024๊ฐœ์˜ ์ฐจ์›์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

outputs, output_lens = pad_packed_sequence(packed_outputs)

print(outputs.shape)  # (L, B, num_dirs*d_h)
print(output_lens)
torch.Size([20, 10, 1024])
tensor([20, 18, 18, 17, 15, 10,  8,  6,  6,  5])

๊ณผ ๋™์ผํ•˜๋‹ค.

Teacher forcing์ด๋ž€, Seq2seq(Encoder-Decoder)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ชจ๋ธ๋“ค์—์„œ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ์•„๋ž˜ ์„ค๋ช…๊ณผ ์ด๋ฏธ์ง€๋Š” ๋ฅผ ์ฐธ๊ณ ํ–ˆ๋‹ค.

์ด์ „ ์‹ค์Šต
์—ฌ๊ธฐ