๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
  • ์‹ค์ œ๋กœ ํšŒ์‚ฌ์—์„œ ์ง„ํ–‰ํ•˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ์—…๋ฌด ํ”„๋กœ์„ธ์Šค
  • ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ฐ์ดํ„ฐ, ๋‘ ๋ฒˆ์งธ๋กœ ์ค‘์š”ํ•œ ๊ฒƒ๋„ ๋ฐ์ดํ„ฐ
  • Kaggle/๋ฐ์ด์ฝ˜๊ณผ ๋‹ค๋ฅด๊ฒŒ, ์‹ค์ œ ์—…๋ฌด์—์„œ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ๊ฒƒ์€?
  • ๋จธ์‹ ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด, ์ผ์ž˜๋Ÿฌ๋กœ ๊ฑฐ๋“ญ๋‚˜๋ณด์ž
  • ๋” ๋˜‘๋˜‘ํ•˜๊ฒŒ ์ผ ์ž˜ํ•˜๋Š”, ๋จธ์‹ ๋Ÿฌ๋‹ ์ฝ”๋“œ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•
  • ๊ฐ€์žฅ ๋ชธ ๊ฐ’์ด ๋น„์‹ผ Role, ์—ญ๋Ÿ‰์ด ๋ฌด์—‡์ผ๊นŒ?

Was this helpful?

  1. 2021 TIL
  2. JUN

11 Fri

ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ

์‹ค์ œ๋กœ ํšŒ์‚ฌ์—์„œ ์ง„ํ–‰ํ•˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ์—…๋ฌด ํ”„๋กœ์„ธ์Šค

  • Rawํ•œ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘, ์ •๋ฆฌ, ์ •์ œ๊นŒ์ง€ ํ•ด์•ผํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋Œ€๋ถ€๋ถ„

    • ๋ฐ์ดํ„ฐ๋งŒ์„ ๋ณด๊ณ  ์ค‘๊ฐ„์— ์˜์‚ฌ๊ฒฐ์ •์ด ์–ธ์ œ๋“  ๋ฐ”๋€” ์ˆ˜ ์žˆ๋‹ค

      • ํ”„๋กœ์ ํŠธ ์ค‘๋‹จ๋„ ๊ฐ€๋Šฅ

    • ๋”ฐ๋ผ์„œ, ์ค‘๊ฐ„ ๋ณด๊ณ ๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค

  • ๋ชจ๋ธ๋ง ๊ฒฐ๊ณผ์— ๋Œ€ํ•ด ๋น„์ฆˆ๋‹ˆ์Šค ์ ์œผ๋กœ ์˜๋ฏธ๊ฐ€ ์žˆ์–ด์•ผ ํ•˜๋ฉฐ ์ด๋ฅผ ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€๋“ค์—๊ฒŒ ์„ค๋“์‹œ์ผœ์•ผ ํ•œ๋‹ค

    • ๋„๋ฉ”์ธ ์ „๋ฌธ๊ฐ€์˜ ์ œ๋Œ€๋กœ ๋œ ๋™์˜๋ฅผ ์–ป์ง€ ๋ชปํ•œ ๋ชจ๋ธ์€ ๋ณธ๊ฒฉ์ ์œผ๋กœ ์‚ฌ์šฉํ™”๋˜๊ธฐ ์–ด๋ ต๋‹ค

  • ๊ฐœ๋ฐœํ•œ ML ๋ชจ๋ธ์ด ์ƒ์šฉํ™” ๋˜๋Š” ๊ฒƒ์€ ๋˜ ๋‹ค๋ฅธ ๋ฌธ์ œ์ด๋‹ค. ๊ฐœ๋ฐœ ์ด์Šˆ๊ฐ€ ์•„์ฃผ ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ๋งŽ์€ ์ง€์›์ด ํ•„์š”ํ•˜๋‹ค

๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ฐ์ดํ„ฐ, ๋‘ ๋ฒˆ์งธ๋กœ ์ค‘์š”ํ•œ ๊ฒƒ๋„ ๋ฐ์ดํ„ฐ

  • ์• ์ดˆ์— ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์ ํ•ฉํ•ด์„œ ์‹œ์ž‘ํ•˜์ง€๋„ ๋ชปํ•˜๊ฑฐ๋‚˜ ์ง€์—ฐ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งค์šฐ ๋งค์šฐ ์•„์ฃผ ๋นˆ๋ฒˆํžˆ ๋งŽ๋‹ค

    • ๊ธฐํš์˜ ์š”๊ตฌ์‚ฌํ•ญ์„ ์ถฉ์กฑ์‹œํ‚ค๋Š” ๋ฐ์ดํ„ฐ๋‚˜ ๋ฐ์ดํ„ฐ feature๊ฐ€ raw๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘ ๋ณด๋‹ˆ ์—†๋Š” ๊ฒฝ์šฐ

    • ์ด๋ฏธ ์กด์žฌํ•œ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ๋˜ ๋ฐ์ดํ„ฐ feature๊ฐ€ ํƒ€ ๋ถ€์„œ ์ž…์žฅ์—์„œ๋Š” ์ค‘์š”ํ•˜์ง€ ์•Š์€ feature์—ฌ์„œ ์ œ๋Œ€๋กœ ๊ฐœ๋ฐœ๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ

    • ๋ฐ์ดํ„ฐ feature๋Š” ์กด์žฌํ•˜๋‚˜ ๊ณ„์†๋œ ์ฝ”๋“œ ๋ฒ„์ „์—…์œผ๋กœ ์ธํ•ด ๋ฐ์ดํ„ฐ ํ˜•ํƒœ์™€ ๊ฐ’์ด ๊ณ„์† ๋ฐ”๋€Œ์–ด ์˜จ ๊ฒฝ์šฐ

  • ์ˆ˜์ง‘ํ•œ ๋ฐ์ดํ„ฐ์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ

    • ์ผ๊ด€์„ฑ ์—†๋Š” ๋ฐ์ดํ„ฐ

    • ์˜ˆ์™ธ ๊ฐ’๋“ค์— ๋Œ€ํ•œ ํ•ด์„

      • 0๋˜๋Š” -1, None, N/A, Nan์— ๋Œ€ํ•œ ์˜๋ฏธ ํŒŒ์•…

    • ๋ฐ์ดํ„ฐ ๊ฐ’์ด ๋ฐ€๋ฆผ

    • ์ค‘๋ณต

  • ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ์ค‘์— ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ

    • ์ „์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ํ•˜๋‚˜์˜ ํŒŒ์ผ์ด ์•„๋‹Œ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํŒŒ์ผ์„ ์ฐธ์กฐํ•˜๊ณ  ํ•ด์„ํ•ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ

    • Naive ํ•˜๊ฒŒ ๊ตฌํ˜„ํ•˜๋ฉด ํ•œ๋‹ฌ~1๋…„์ด ๋„˜๋Š” ์ฒ˜๋ฆฌ์‹œ๊ฐ„์ด ๊ฑธ๋ฆด ์ˆ˜๋„ ์žˆ๋‹ค

  • ๋ฐ์ดํ„ฐ ๊ด€๋ จ ๋ฌธ์ œ๋Š” ๋ฐ˜๋“œ์‹œ ์žˆ์„ ์ˆ˜ ์žˆ์Œ์„ ๋ฏธ๋ฆฌ ์ธ์ง€ํ•  ๊ฒƒ

Kaggle/๋ฐ์ด์ฝ˜๊ณผ ๋‹ค๋ฅด๊ฒŒ, ์‹ค์ œ ์—…๋ฌด์—์„œ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธฐ๋Š” ๊ฒƒ์€?

  • ์บ๊ธ€/๋ฐ์ด์ฝ˜ ๋“ฑ์˜ ๋ฐ์ดํ„ฐ ๊ฒฝ์ง„๋Œ€ํšŒ๋Š” ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ์ œ์ผ ์ค‘์š”ํ•˜๊ฒŒ ์—ฌ๊ธด๋‹ค

    • Accuracy, F1-score

    • ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ์˜ฌ๋ฆฌ๊ธฐ ์œ„ํ•ด ๋งˆ์ง€๋ง‰๊นŒ์ง€ ๊ฒฝ์Ÿ์ด ์น˜์—ด

  • ์‹ค์ œ ์—…๋ฌด์—์„œ๋Š” 0.05 ~ 0.1 ์ •๋„์˜ ์„ฑ๋Šฅ ์ง€ํ‘œ ์ฐจ์ด๋Š” ๊ฒฐ์ฝ” ์ค‘์š”ํ•˜์ง€ ์•Š๋‹ค

  • score 0.05๋ฅผ ์˜ฌ๋ฆฌ๋Š” ๊ฒƒ ๋ณด๋‹ค ์œ ์šฉํ•œ ๊ฒฐ๋ก ๋“ค์ด ๋” ๋งŽ์€ ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค

    • ์œ ์šฉํ•œ ๊ฒฐ๋ก ๋“ค์€ ๋น„์ฆˆ๋‹ˆ์Šค๋‚˜ ์˜์‚ฌ๊ฒฐ์ •์— ๋„์›€์ด ๋˜๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ๋ชจ๋ธ๋ง ๊ฒฐ๊ณผ๋ฅผ ์˜๋ฏธ

    • ์–ด๋А ์ •๋„ ์‚ฌ์šฉํ• ๋งŒํ•œ ์‹ค์‚ฌ์šฉ ์„ฑ๋Šฅ์ด ๋‚˜์˜ฌ ๋•Œ ๊นŒ์ง€๋Š” ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ๊ฐœ์„ ํ•˜์ง€๋งŒ ๊ทธ ์ดํ›„์—๋Š” ์ธ์‚ฌ์ดํŠธ ๋ถ„์„์— ์ง‘์ค‘

    • ์ด ๊ณผ์ •์—์„œ ML ๋ชจ๋ธ๊ณผ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์ž˜ ์—ฐ๊ด€์‹œ์ผœ ์„ค๋“/๋ฐœํ‘œํ•˜์—ฌ์•ผ ํ•˜๋Š”๋ฐ, XAI๊ฐ€ ๋งŽ์ด ์‚ฌ์šฉ๋œ๋‹ค

      • XAI : eXplainable AI, ์„ค๋ช… ๊ฐ€๋Šฅํ•œ ์ธ๊ณต์ง€๋Šฅ

  • ๋‘ ๊ฒฝ์šฐ, ๋‹ค ๋ชจ๋ธ์˜ ๊ฐ•์ธํ•จ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค

    • ๊ฐ•์ธํ•จ : ์–ด๋–ค ๋ฐ์ดํ„ฐ์…‹์— ์ ์šฉํ•˜๋“ ์ง€ ์ค€์ˆ˜ํ•˜๊ณ  ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ

    • ๋”ฐ๋ผ์„œ ๊ฒ€์ฆ์— ๋…ธ๋ ฅ์„ ๋งŽ์ด ๊ธฐ์šธ์ธ๋‹ค.

๋จธ์‹ ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด, ์ผ์ž˜๋Ÿฌ๋กœ ๊ฑฐ๋“ญ๋‚˜๋ณด์ž

  • ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ฒ˜๋ฆฌ ๊ณผ์ •์— ๋Œ€ํ•ด Data Engineer์™€ ํ•จ๊ป˜ ์ด์•ผ๊ธฐํ•˜์ž

    • ๋จธ์‹ ๋Ÿฌ๋‹ ๊ณผ์ •์—์„œ ํ•„์š”ํ•œ ๋ถ€๋ถ„์„ ๋ฏธ๋ฆฌ ์กฐ์œจํ•  ๊ฒƒ

    • ๋•Œ๋กœ๋Š” ์•„์ด๋””์–ด๋„ ์ œ์•ˆ ๊ฐ€๋Šฅ

  • ๋จธ์‹ ๋Ÿฌ๋‹์€ ๋ฌธ์ œ ์ •์˜์—์„œ๋ถ€ํ„ฐ ์ถœ๋ฐœํ•œ๋‹ค. ๋ฌธ์ œ๋ฅผ ์–ด๋–ป๊ฒŒ ์ •์˜ํ•˜๋А๋ƒ์— ๋”ฐ๋ผ ํ’€์–ด๊ฐ€๋Š” ๋ฐฉํ–ฅ์ด ๋‹ฌ๋ผ์ง„๋‹ค.

    • ๋ฌธ์ œ ์ •์˜๊ฐ€ ์ž˜๋ชป๋˜๋ฉด ์ดํ›„์˜ ์ ‘๊ทผ๋ฒ•๋„ ์“ธ๋ชจ๊ฐ€ ์—†์–ด์ง€๋Š” ๊ฒฝ์šฐ ๋งŽ๋‹ค

  • ๋จธ์‹ ๋Ÿฌ๋‹ˆ์œผ์ด ๊ฒฐ๊ณผ ๋ชจ๋ธ์ด ๋น„์ฆˆ๋‹ˆ์Šค์ ์œผ๋กœ ์–ด๋– ํ•œ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๋Š”์ง€, ์ฒ˜์Œ๋ถ€ํ„ฐ ๊ณ ๋ฏผํ•˜์ž

    • ์ œ๋Œ€๋กœ ๋œ ๋ฌธ์ œ ๋ฅผ ์žก๋”๋ผ๋„ ๋น„์ฆˆ๋‹ˆ์Šค์ ์œผ๋กœ๋„ ์˜๋ฏธ๊ฐ€ ์žˆ์–ด์•ผ ์„ฑ๊ณผ ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค.

  • ๋‹ค์–‘ํ•œ ๋ชจ๋ธ๋ง ๋ฐ ๊ธฐ๋ฒ• ์ ์šฉ์„ ๋งŽ์ด, ๋นจ๋ฆฌ ํ•ด์•ผํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ์ž˜ ๊ณต์œ ํ•˜๊ณ  ๋ฐฉํ–ฅ์„ฑ์„ ํ˜‘์˜ํ•ด์•ผ ํ•œ๋‹ค

    • ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ๋ง์€ ์ค‘๊ฐ„ ๊ฒฐ๊ณผ์ด์ง€๋งŒ ๋‹ค๋ฅธ ๋™๋ฃŒ๋“ค์˜ ์—…๋ฌด์™€ ์˜์‚ฌ๊ฒฐ์ •์— ํฐ ๋„์›€์ด ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค => ๊ณต์œ ํ•  ๊ฒƒ

๋” ๋˜‘๋˜‘ํ•˜๊ฒŒ ์ผ ์ž˜ํ•˜๋Š”, ๋จธ์‹ ๋Ÿฌ๋‹ ์ฝ”๋“œ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•

  • ์ „์ฒ˜๋ฆฌ ์ฝ”๋“œ๋ฅผ 1ํšŒ์šฉ์œผ๋กœ ์งœ์ง€ ๋ง๊ณ , ์กฐ๊ธˆ์ด๋ผ๋„ ๊ณ ๋ฏผํ•˜์—ฌ ์“ธ๋ชจ ์žˆ๊ฒŒ ์งœ๋ณด๊ธฐ

    • ๋ฐ˜๋Œ€๋กœ ๋„ˆ๋ฌด ์ฒ˜์Œ๋ถ€ํ„ฐ ์™„๋ฒฝํ•œ ์ฝ”๋“œ๋ฅผ ์งœ๋ ค๊ณ  ํ•˜๋ฉด ์•ˆ๋œ๋‹ค

    • ์ „์ฒ˜๋ฆฌ ์ฝ”๋“œ๋Š” 1ํšŒ์„ฑ์ธ ๋ถ€๋ถ„๋„ ์ƒ๋‹น๋ถ€๋ถ„ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค

      • ์†Œ ์žก๋Š” ์นผ์„ ๋‹ญ ์žก๋Š” ์นผ๋กœ ์“ฐ์ง€ ๋ง๊ธฐ

  • ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘, ์ „์ฒ˜๋ฆฌ๋ฅผ ๋งŽ์ด ํ•ด ๋ณด๋ฉด, ์–ด๋А ์ •๋„ ๋ฐ˜๋ณต๋˜๋Š” ํŒจํ„ด์ด ๋ณด์ด๋Š”๋ฐ, ์ด๊ฒƒ๋“ค์„ ๋ชจ๋“ˆ(๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ)ํ™” ํ•˜๋ฉด ์ข‹๋‹ค

    • ๋ณดํ†ต Jupyter Notebook์—์„œ ํ”„๋กœํ† ํƒ€์ดํ•‘์„ ํ•˜๊ณ 

    • ์™„๋ฒฝํ•˜๊ฒŒ ๋ชจ๋“ˆํ™” ํ•  ๋•Œ๋Š” Python IDE์—์„œ ๊ฐœ๋ฐœํ•œ๋‹ค

  • EDA ๋ฐ ์‹œ๊ฐํ™” ์ฝ”๋“œ๋ฅผ ์งœ๋Š” ๊ฒฝ์šฐ์—๋„ ๊ณ ๋ฏผํ•ด์„œ ์ฝ”๋“œ๋ฅผ ์งœ๊ณ , ๋ฐ˜๋ณตํ•ด์„œ ๋ฐœ์ƒํ•˜๋ฉด ๋ชจ๋“ˆํ™” ํ•œ๋‹ค

    • ํ•œ๋ฒˆ ์ž˜ ๋งŒ๋“ค์–ด๋‘๋ฉด feature๋‚˜ ์ปฌ๋Ÿผ๋ช…๋งŒ ๋ฐ”๊พธ์–ด์„œ ์‚ฌ์šฉํ•ด๋„ ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์•„์ฃผ ๋งŽ๋‹ค

    • ๊ณ„์† ๋ฐœ์ „์‹œํ‚ฌ ์ˆ˜๋„ ์žˆ๋‹ค

  • ์กฐ๊ธˆ์”ฉ ์Œ“์ด๋Š” ์žฌ์‚ฌ์šฉ๊ฐ€๋Šฅํ•œ ์ฝ”๋“œ / ๋ชจ๋“ˆ๋“ค์€ ๋ชจ๋“  ์—…๋ฌด๋ฅผ ๋” ๋น ๋ฅด๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ค

    • ์žฌ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“ˆ๋“ค์ด ์Œ“์—ฌ์žˆ๋Š” A ์—”์ง€๋‹ˆ์–ด์™€ ๊ทธ๋ ‡๊ธฐ ์•Š์€ B ์—”์ง€๋‹ˆ์–ด์˜ ์ƒ์‚ฐ์„ฑ ์ฐจ์ด๋Š” ๋งค์šฐ ํฌ๋‹ค

  • ํ•™์Šต์„ ์ˆ˜ํ–‰ํ•˜๋Š” Training ์ฝ”๋“œ๋Š” ๊พธ์ค€ํžˆ ์‚ฌ์šฉํ•˜๊ฒŒ ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์œผ๋ฏ€๋กœ, ๋ฏธ๋ฆฌ ์ด๋ฅผ ์—ผ๋‘ํ•ด๋‘๊ธฐ

    • ๋ฐ”๋€Œ๋Š” ์ฃผ์š” ๋ณ€์ˆ˜๋“ค : Dataset, Epoch, Validation N-group, Model, Parameters, Features, etc

  • Training๊ณผ Validation, Parameter Optimization์€ ๋ฌด์ˆ˜ํ•˜๊ฒŒ ๋งŽ์ด ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋ณต์ž‘์—…์— ๋Œ€ํ•ด์„œ๋Š” ์ž๋™ํ™” ํ•  ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„์€ ์ž๋™ํ™” ํ•˜๊ธฐ

  • ์ด๋ฏธ ๋งŒ๋“ฑ๋Ÿฌ์ง„ ์ข‹์€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋‚˜ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์žˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋ฏ€๋กœ ์ง์ ‘ ๊ฐœ๋ฐœํ•˜๊ธฐ ์ „ ๊ผญ ๋ฆฌ์„œ์น˜ ํ•ด๋ณด๊ธฐ

  • ๊ฐ€์žฅ ๋ฐ”๋žŒ์งํ•œ ๊ตฌ์กฐ๋Š” ๋ฐ์ดํ„ฐ - ๋จธ์‹ ๋Ÿฌ๋‹ ํ›ˆ๋ จ - ๊ฒ€์ฆ & ์ตœ์ ํ™” - ์‹œ๊ฐํ™” ์˜ ์—ฐ์†์ ์ธ Pipeline ์„ ์ž์œ ์ž์žฌ๋กœ ๋—๋‹ค ๋ถ™์˜€๋‹ค ํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์—ฐํ•˜๊ฒŒ ์ˆ˜์ •์ด ๊ฐ€๋Šฅํ•œ ์ฝ”๋“œ

    • ์—…๋ฌด ์ดˆ๋ฐ˜ ๋ณด๋‹ค๋Š” ํ”„๋กœ์ ํŠธ ์„œ๋„ˆ๊ฐœ๋ฅผ ์™„๋ฃŒํ–ˆ์„ ๋ฌด๋ ต๋ถ€ํ„ฐ ๊ณ ๋ฏผํ•ด๋ณด๊ธฐ

๊ฐ€์žฅ ๋ชธ ๊ฐ’์ด ๋น„์‹ผ Role, ์—ญ๋Ÿ‰์ด ๋ฌด์—‡์ผ๊นŒ?

  • DS/ML/SW End-to-End Engineer

    • Data Science, Machine Learning, SW๊ฐœ๋ฐœ์— ๋Œ€ํ•ด ๋ชจ๋“  ๊ณผ์ •์„ ์ดํ•ดํ•˜๊ณ  ์žˆ๋Š” ์ธ์žฌ

  • DS/ML Competition Winner, Optimization Professional

    • Optimization ๊ด€์ ์—์„œ ๋‚จ๋“ค๊ณผ ๋‹ค๋ฅธ ํƒ์›”ํ•จ์„ ๋ณด์—ฌ์ค„ ์ˆ˜ ์žˆ๋Š” ์ธ์žฌ

  • Machine Learning, Product S/W Engineer

    • ๋จธ์‹ ๋Ÿฌ๋‹์„ ๋‹จ์ˆœ ์—ฐ๊ตฌ๋กœ๋งŒ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์‹ค์ œ ์ œํ’ˆ์— ์ด๋ฅผ ์ ์šฉํ•˜๊ณ  ์šด์šฉํ•ด๋ณธ ๊ฒฝํ—˜์ด ์žˆ๋Š” ์ธ์žฌ

Previous12 SatNext10 Thu

Last updated 4 years ago

Was this helpful?