๐Ÿšดโ€โ™‚๏ธ
TIL
  • MAIN
  • : TIL?
  • : WIL
  • : Plan
  • : Retrospective
    • 21Y
      • Wait a moment!
      • 9M 2W
      • 9M1W
      • 8M4W
      • 8M3W
      • 8M2W
      • 8M1W
      • 7M4W
      • 7M3W
      • 7M2W
      • 7M1W
      • 6M5W
      • 1H
    • ์ƒˆ์‚ฌ๋žŒ ๋˜๊ธฐ ํ”„๋กœ์ ํŠธ
      • 2ํšŒ์ฐจ
      • 1ํšŒ์ฐจ
  • TIL : ML
    • Paper Analysis
      • BERT
      • Transformer
    • Boostcamp 2st
      • [S]Data Viz
        • (4-3) Seaborn ์‹ฌํ™”
        • (4-2) Seaborn ๊ธฐ์ดˆ
        • (4-1) Seaborn ์†Œ๊ฐœ
        • (3-4) More Tips
        • (3-3) Facet ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-2) Color ์‚ฌ์šฉํ•˜๊ธฐ
        • (3-1) Text ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-3) Scatter Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-2) Line Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (2-1) Bar Plot ์‚ฌ์šฉํ•˜๊ธฐ
        • (1-3) Python๊ณผ Matplotlib
        • (1-2) ์‹œ๊ฐํ™”์˜ ์š”์†Œ
        • (1-1) Welcome to Visualization (OT)
      • [P]MRC
        • (2๊ฐ•) Extraction-based MRC
        • (1๊ฐ•) MRC Intro & Python Basics
      • [P]KLUE
        • (5๊ฐ•) BERT ๊ธฐ๋ฐ˜ ๋‹จ์ผ ๋ฌธ์žฅ ๋ถ„๋ฅ˜ ๋ชจ๋ธ ํ•™์Šต
        • (4๊ฐ•) ํ•œ๊ตญ์–ด BERT ์–ธ์–ด ๋ชจ๋ธ ํ•™์Šต
        • [NLP] ๋ฌธ์žฅ ๋‚ด ๊ฐœ์ฒด๊ฐ„ ๊ด€๊ณ„ ์ถ”์ถœ
        • (3๊ฐ•) BERT ์–ธ์–ด๋ชจ๋ธ ์†Œ๊ฐœ
        • (2๊ฐ•) ์ž์—ฐ์–ด์˜ ์ „์ฒ˜๋ฆฌ
        • (1๊ฐ•) ์ธ๊ณต์ง€๋Šฅ๊ณผ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ
      • [U]Stage-CV
      • [U]Stage-NLP
        • 7W Retrospective
        • (10๊ฐ•) Advanced Self-supervised Pre-training Models
        • (09๊ฐ•) Self-supervised Pre-training Models
        • (08๊ฐ•) Transformer (2)
        • (07๊ฐ•) Transformer (1)
        • 6W Retrospective
        • (06๊ฐ•) Beam Search and BLEU score
        • (05๊ฐ•) Sequence to Sequence with Attention
        • (04๊ฐ•) LSTM and GRU
        • (03๊ฐ•) Recurrent Neural Network and Language Modeling
        • (02๊ฐ•) Word Embedding
        • (01๊ฐ•) Intro to NLP, Bag-of-Words
        • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Preprocessing for NMT Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Subword-level Language Model
        • [ํ•„์ˆ˜ ๊ณผ์ œ2] RNN-based Language Model
        • [์„ ํƒ ๊ณผ์ œ] BERT Fine-tuning with transformers
        • [ํ•„์ˆ˜ ๊ณผ์ œ] Data Preprocessing
      • Mask Wear Image Classification
        • 5W Retrospective
        • Report_Level1_6
        • Performance | Review
        • DAY 11 : HardVoting | MultiLabelClassification
        • DAY 10 : Cutmix
        • DAY 9 : Loss Function
        • DAY 8 : Baseline
        • DAY 7 : Class Imbalance | Stratification
        • DAY 6 : Error Fix
        • DAY 5 : Facenet | Save
        • DAY 4 : VIT | F1_Loss | LrScheduler
        • DAY 3 : DataSet/Lodaer | EfficientNet
        • DAY 2 : Labeling
        • DAY 1 : EDA
        • 2_EDA Analysis
      • [P]Stage-1
        • 4W Retrospective
        • (10๊ฐ•) Experiment Toolkits & Tips
        • (9๊ฐ•) Ensemble
        • (8๊ฐ•) Training & Inference 2
        • (7๊ฐ•) Training & Inference 1
        • (6๊ฐ•) Model 2
        • (5๊ฐ•) Model 1
        • (4๊ฐ•) Data Generation
        • (3๊ฐ•) Dataset
        • (2๊ฐ•) Image Classification & EDA
        • (1๊ฐ•) Competition with AI Stages!
      • [U]Stage-3
        • 3W Retrospective
        • PyTorch
          • (10๊ฐ•) PyTorch Troubleshooting
          • (09๊ฐ•) Hyperparameter Tuning
          • (08๊ฐ•) Multi-GPU ํ•™์Šต
          • (07๊ฐ•) Monitoring tools for PyTorch
          • (06๊ฐ•) ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
          • (05๊ฐ•) Dataset & Dataloader
          • (04๊ฐ•) AutoGrad & Optimizer
          • (03๊ฐ•) PyTorch ํ”„๋กœ์ ํŠธ ๊ตฌ์กฐ ์ดํ•ดํ•˜๊ธฐ
          • (02๊ฐ•) PyTorch Basics
          • (01๊ฐ•) Introduction to PyTorch
      • [U]Stage-2
        • 2W Retrospective
        • DL Basic
          • (10๊ฐ•) Generative Models 2
          • (09๊ฐ•) Generative Models 1
          • (08๊ฐ•) Sequential Models - Transformer
          • (07๊ฐ•) Sequential Models - RNN
          • (06๊ฐ•) Computer Vision Applications
          • (05๊ฐ•) Modern CNN - 1x1 convolution์˜ ์ค‘์š”์„ฑ
          • (04๊ฐ•) Convolution์€ ๋ฌด์—‡์ธ๊ฐ€?
          • (03๊ฐ•) Optimization
          • (02๊ฐ•) ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ - MLP (Multi-Layer Perceptron)
          • (01๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ณธ ์šฉ์–ด ์„ค๋ช… - Historical Review
        • Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Multi-headed Attention Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] LSTM Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] CNN Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] Optimization Assignment
          • [ํ•„์ˆ˜ ๊ณผ์ œ] MLP Assignment
      • [U]Stage-1
        • 1W Retrospective
        • AI Math
          • (AI Math 10๊ฐ•) RNN ์ฒซ๊ฑธ์Œ
          • (AI Math 9๊ฐ•) CNN ์ฒซ๊ฑธ์Œ
          • (AI Math 8๊ฐ•) ๋ฒ ์ด์ฆˆ ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 7๊ฐ•) ํ†ต๊ณ„ํ•™ ๋ง›๋ณด๊ธฐ
          • (AI Math 6๊ฐ•) ํ™•๋ฅ ๋ก  ๋ง›๋ณด๊ธฐ
          • (AI Math 5๊ฐ•) ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต๋ฐฉ๋ฒ• ์ดํ•ดํ•˜๊ธฐ
          • (AI Math 4๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ๋งค์šด๋ง›
          • (AI Math 3๊ฐ•) ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• - ์ˆœํ•œ๋ง›
          • (AI Math 2๊ฐ•) ํ–‰๋ ฌ์ด ๋ญ์˜ˆ์š”?
          • (AI Math 1๊ฐ•) ๋ฒกํ„ฐ๊ฐ€ ๋ญ์˜ˆ์š”?
        • Python
          • (Python 7-2๊ฐ•) pandas II
          • (Python 7-1๊ฐ•) pandas I
          • (Python 6๊ฐ•) numpy
          • (Python 5-2๊ฐ•) Python data handling
          • (Python 5-1๊ฐ•) File / Exception / Log Handling
          • (Python 4-2๊ฐ•) Module and Project
          • (Python 4-1๊ฐ•) Python Object Oriented Programming
          • (Python 3-2๊ฐ•) Pythonic code
          • (Python 3-1๊ฐ•) Python Data Structure
          • (Python 2-4๊ฐ•) String and advanced function concept
          • (Python 2-3๊ฐ•) Conditionals and Loops
          • (Python 2-2๊ฐ•) Function and Console I/O
          • (Python 2-1๊ฐ•) Variables
          • (Python 1-3๊ฐ•) ํŒŒ์ด์ฌ ์ฝ”๋”ฉ ํ™˜๊ฒฝ
          • (Python 1-2๊ฐ•) ํŒŒ์ด์ฌ ๊ฐœ์š”
          • (Python 1-1๊ฐ•) Basic computer class for newbies
        • Assignment
          • [์„ ํƒ ๊ณผ์ œ 3] Maximum Likelihood Estimate
          • [์„ ํƒ ๊ณผ์ œ 2] Backpropagation
          • [์„ ํƒ ๊ณผ์ œ 1] Gradient Descent
          • [ํ•„์ˆ˜ ๊ณผ์ œ 5] Morsecode
          • [ํ•„์ˆ˜ ๊ณผ์ œ 4] Baseball
          • [ํ•„์ˆ˜ ๊ณผ์ œ 3] Text Processing 2
          • [ํ•„์ˆ˜ ๊ณผ์ œ 2] Text Processing 1
          • [ํ•„์ˆ˜ ๊ณผ์ œ 1] Basic Math
    • ๋”ฅ๋Ÿฌ๋‹ CNN ์™„๋ฒฝ ๊ฐ€์ด๋“œ - Fundamental ํŽธ
      • ์ข…ํ•ฉ ์‹ค์Šต 2 - ์บ๊ธ€ Plant Pathology(๋‚˜๋ฌด์žŽ ๋ณ‘ ์ง„๋‹จ) ๊ฒฝ์—ฐ ๋Œ€ํšŒ
      • ์ข…ํ•ฉ ์‹ค์Šต 1 - 120์ข…์˜ Dog Breed Identification ๋ชจ๋ธ ์ตœ์ ํ™”
      • ์‚ฌ์ „ ํ›ˆ๋ จ ๋ชจ๋ธ์˜ ๋ฏธ์„ธ ์กฐ์ • ํ•™์Šต๊ณผ ๋‹ค์–‘ํ•œ Learning Rate Scheduler์˜ ์ ์šฉ
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - ResNet ์ƒ์„ธ์™€ EfficientNet ๊ฐœ์š”
      • Advanced CNN ๋ชจ๋ธ ํŒŒํ—ค์น˜๊ธฐ - AlexNet, VGGNet, GoogLeNet
      • Albumentation์„ ์ด์šฉํ•œ Augmentation๊ธฐ๋ฒ•๊ณผ Keras Sequence ํ™œ์šฉํ•˜๊ธฐ
      • ์‚ฌ์ „ ํ›ˆ๋ จ CNN ๋ชจ๋ธ์˜ ํ™œ์šฉ๊ณผ Keras Generator ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ดํ•ด
      • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์˜ ์ดํ•ด - Keras ImageDataGenerator ํ™œ์šฉ
      • CNN ๋ชจ๋ธ ๊ตฌํ˜„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ณธ ๊ธฐ๋ฒ• ์ ์šฉํ•˜๊ธฐ
    • AI School 1st
    • ํ˜„์—… ์‹ค๋ฌด์ž์—๊ฒŒ ๋ฐฐ์šฐ๋Š” Kaggle ๋จธ์‹ ๋Ÿฌ๋‹ ์ž…๋ฌธ
    • ํŒŒ์ด์ฌ ๋”ฅ๋Ÿฌ๋‹ ํŒŒ์ดํ† ์น˜
  • TIL : Python & Math
    • Do It! ์žฅ๊ณ +๋ถ€ํŠธ์ŠคํŠธ๋žฉ: ํŒŒ์ด์ฌ ์›น๊ฐœ๋ฐœ์˜ ์ •์„
      • Relations - ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„
      • Relations - ๋‹ค๋Œ€์ผ ๊ด€๊ณ„
      • ํ…œํ”Œ๋ฆฟ ํŒŒ์ผ ๋ชจ๋“ˆํ™” ํ•˜๊ธฐ
      • TDD (Test Driven Development)
      • template tags & ์กฐ๊ฑด๋ฌธ
      • ์ •์  ํŒŒ์ผ(static files) & ๋ฏธ๋””์–ด ํŒŒ์ผ(media files)
      • FBV (Function Based View)์™€ CBV (Class Based View)
      • Django ์ž…๋ฌธํ•˜๊ธฐ
      • ๋ถ€ํŠธ์ŠคํŠธ๋žฉ
      • ํ”„๋ก ํŠธ์—”๋“œ ๊ธฐ์ดˆ๋‹ค์ง€๊ธฐ (HTML, CSS, JS)
      • ๋“ค์–ด๊ฐ€๊ธฐ + ํ™˜๊ฒฝ์„ค์ •
    • Algorithm
      • Programmers
        • Level1
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์ˆซ์ž ๋ฌธ์ž์—ด๊ณผ ์˜๋‹จ์–ด
          • ์ž์—ฐ์ˆ˜ ๋’ค์ง‘์–ด ๋ฐฐ์—ด๋กœ ๋งŒ๋“ค๊ธฐ
          • ์ •์ˆ˜ ๋‚ด๋ฆผ์ฐจ์ˆœ์œผ๋กœ ๋ฐฐ์น˜ํ•˜๊ธฐ
          • ์ •์ˆ˜ ์ œ๊ณฑ๊ทผ ํŒ๋ณ„
          • ์ œ์ผ ์ž‘์€ ์ˆ˜ ์ œ๊ฑฐํ•˜๊ธฐ
          • ์ง์‚ฌ๊ฐํ˜• ๋ณ„์ฐ๊ธฐ
          • ์ง์ˆ˜์™€ ํ™€์ˆ˜
          • ์ฒด์œก๋ณต
          • ์ตœ๋Œ€๊ณต์•ฝ์ˆ˜์™€ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • ์ฝœ๋ผ์ธ  ์ถ”์ธก
          • ํฌ๋ ˆ์ธ ์ธํ˜•๋ฝ‘๊ธฐ ๊ฒŒ์ž„
          • ํ‚คํŒจ๋“œ ๋ˆ„๋ฅด๊ธฐ
          • ํ‰๊ท  ๊ตฌํ•˜๊ธฐ
          • ํฐ์ผ“๋ชฌ
          • ํ•˜์ƒค๋“œ ์ˆ˜
          • ํ•ธ๋“œํฐ ๋ฒˆํ˜ธ ๊ฐ€๋ฆฌ๊ธฐ
          • ํ–‰๋ ฌ์˜ ๋ง์…ˆ
        • Level2
          • ์ˆซ์ž์˜ ํ‘œํ˜„
          • ์ˆœ์œ„ ๊ฒ€์ƒ‰
          • ์ˆ˜์‹ ์ตœ๋Œ€ํ™”
          • ์†Œ์ˆ˜ ์ฐพ๊ธฐ
          • ์†Œ์ˆ˜ ๋งŒ๋“ค๊ธฐ
          • ์‚ผ๊ฐ ๋‹ฌํŒฝ์ด
          • ๋ฌธ์ž์—ด ์••์ถ•
          • ๋ฉ”๋‰ด ๋ฆฌ๋‰ด์–ผ
          • ๋” ๋งต๊ฒŒ
          • ๋•…๋”ฐ๋จน๊ธฐ
          • ๋ฉ€์ฉกํ•œ ์‚ฌ๊ฐํ˜•
          • ๊ด„ํ˜ธ ํšŒ์ „ํ•˜๊ธฐ
          • ๊ด„ํ˜ธ ๋ณ€ํ™˜
          • ๊ตฌ๋ช…๋ณดํŠธ
          • ๊ธฐ๋Šฅ ๊ฐœ๋ฐœ
          • ๋‰ด์Šค ํด๋Ÿฌ์Šคํ„ฐ๋ง
          • ๋‹ค๋ฆฌ๋ฅผ ์ง€๋‚˜๋Š” ํŠธ๋Ÿญ
          • ๋‹ค์Œ ํฐ ์ˆซ์ž
          • ๊ฒŒ์ž„ ๋งต ์ตœ๋‹จ๊ฑฐ๋ฆฌ
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
          • ๊ฐ€์žฅ ํฐ ์ •์‚ฌ๊ฐํ˜• ์ฐพ๊ธฐ
          • H-Index
          • JadenCase ๋ฌธ์ž์—ด ๋งŒ๋“ค๊ธฐ
          • N๊ฐœ์˜ ์ตœ์†Œ๊ณต๋ฐฐ์ˆ˜
          • N์ง„์ˆ˜ ๊ฒŒ์ž„
          • ๊ฐ€์žฅ ํฐ ์ˆ˜
          • 124 ๋‚˜๋ผ์˜ ์ˆซ์ž
          • 2๊ฐœ ์ดํ•˜๋กœ ๋‹ค๋ฅธ ๋น„ํŠธ
          • [3์ฐจ] ํŒŒ์ผ๋ช… ์ •๋ ฌ
          • [3์ฐจ] ์••์ถ•
          • ์ค„ ์„œ๋Š” ๋ฐฉ๋ฒ•
          • [3์ฐจ] ๋ฐฉ๊ธˆ ๊ทธ๊ณก
          • ๊ฑฐ๋ฆฌ๋‘๊ธฐ ํ™•์ธํ•˜๊ธฐ
        • Level3
          • ๋งค์นญ ์ ์ˆ˜
          • ์™ธ๋ฒฝ ์ ๊ฒ€
          • ๊ธฐ์ง€๊ตญ ์„ค์น˜
          • ์ˆซ์ž ๊ฒŒ์ž„
          • 110 ์˜ฎ๊ธฐ๊ธฐ
          • ๊ด‘๊ณ  ์ œ๊ฑฐ
          • ๊ธธ ์ฐพ๊ธฐ ๊ฒŒ์ž„
          • ์…”ํ‹€๋ฒ„์Šค
          • ๋‹จ์†์นด๋ฉ”๋ผ
          • ํ‘œ ํŽธ์ง‘
          • N-Queen
          • ์ง•๊ฒ€๋‹ค๋ฆฌ ๊ฑด๋„ˆ๊ธฐ
          • ์ตœ๊ณ ์˜ ์ง‘ํ•ฉ
          • ํ•ฉ์Šน ํƒ์‹œ ์š”๊ธˆ
          • ๊ฑฐ์Šค๋ฆ„๋ˆ
          • ํ•˜๋…ธ์ด์˜ ํƒ‘
          • ๋ฉ€๋ฆฌ ๋›ฐ๊ธฐ
          • ๋ชจ๋‘ 0์œผ๋กœ ๋งŒ๋“ค๊ธฐ
        • Level4
    • Head First Python
    • ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ์œ„ํ•œ SQL
    • ๋‹จ ๋‘ ์žฅ์˜ ๋ฌธ์„œ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ์‹œ๊ฐํ™” ๋ฝ€๊ฐœ๊ธฐ
    • Linear Algebra(Khan Academy)
    • ์ธ๊ณต์ง€๋Šฅ์„ ์œ„ํ•œ ์„ ํ˜•๋Œ€์ˆ˜
    • Statistics110
  • TIL : etc
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Kubernetes
    • [๋”ฐ๋ฐฐ๋Ÿฐ] Docker
      • 2. ๋„์ปค ์„ค์น˜ ์‹ค์Šต 1 - ํ•™์ŠตํŽธ(์ค€๋น„๋ฌผ/์‹ค์Šต ์œ ํ˜• ์†Œ๊ฐœ)
      • 1. ์ปจํ…Œ์ด๋„ˆ์™€ ๋„์ปค์˜ ์ดํ•ด - ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์“ฐ๋Š”์ด์œ  / ์ผ๋ฐ˜ํ”„๋กœ๊ทธ๋žจ๊ณผ ์ปจํ…Œ์ด๋„ˆํ”„๋กœ๊ทธ๋žจ์˜ ์ฐจ์ด์ 
      • 0. ๋“œ๋””์–ด ์ฐพ์•„์˜จ Docker ๊ฐ•์˜! ์™•์ดˆ๋ณด์—์„œ ๋„์ปค ๋งˆ์Šคํ„ฐ๋กœ - OT
    • CoinTrading
      • [๊ฐ€์ƒ ํ™”ํ ์ž๋™ ๋งค๋งค ํ”„๋กœ๊ทธ๋žจ] ๋ฐฑํ…Œ์ŠคํŒ… : ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŒ…
    • Gatsby
      • 01 ๊นƒ๋ถ ํฌ๊ธฐ ์„ ์–ธ
  • TIL : Project
    • Mask Wear Image Classification
    • Project. GARIGO
  • 2021 TIL
    • CHANGED
    • JUN
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Thu
      • 2 Wed
      • 1 Tue
    • MAY
      • 31 Mon
      • 30 Sun
      • 29 Sat
      • 28 Fri
      • 27 Thu
      • 26 Wed
      • 25 Tue
      • 24 Mon
      • 23 Sun
      • 22 Sat
      • 21 Fri
      • 20 Thu
      • 19 Wed
      • 18 Tue
      • 17 Mon
      • 16 Sun
      • 15 Sat
      • 14 Fri
      • 13 Thu
      • 12 Wed
      • 11 Tue
      • 10 Mon
      • 9 Sun
      • 8 Sat
      • 7 Fri
      • 6 Thu
      • 5 Wed
      • 4 Tue
      • 3 Mon
      • 2 Sun
      • 1 Sat
    • APR
      • 30 Fri
      • 29 Thu
      • 28 Wed
      • 27 Tue
      • 26 Mon
      • 25 Sun
      • 24 Sat
      • 23 Fri
      • 22 Thu
      • 21 Wed
      • 20 Tue
      • 19 Mon
      • 18 Sun
      • 17 Sat
      • 16 Fri
      • 15 Thu
      • 14 Wed
      • 13 Tue
      • 12 Mon
      • 11 Sun
      • 10 Sat
      • 9 Fri
      • 8 Thu
      • 7 Wed
      • 6 Tue
      • 5 Mon
      • 4 Sun
      • 3 Sat
      • 2 Fri
      • 1 Thu
    • MAR
      • 31 Wed
      • 30 Tue
      • 29 Mon
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • FEB
      • 28 Sun
      • 27 Sat
      • 26 Fri
      • 25 Thu
      • 24 Wed
      • 23 Tue
      • 22 Mon
      • 21 Sun
      • 20 Sat
      • 19 Fri
      • 18 Thu
      • 17 Wed
      • 16 Tue
      • 15 Mon
      • 14 Sun
      • 13 Sat
      • 12 Fri
      • 11 Thu
      • 10 Wed
      • 9 Tue
      • 8 Mon
      • 7 Sun
      • 6 Sat
      • 5 Fri
      • 4 Thu
      • 3 Wed
      • 2 Tue
      • 1 Mon
    • JAN
      • 31 Sun
      • 30 Sat
      • 29 Fri
      • 28 Thu
      • 27 Wed
      • 26 Tue
      • 25 Mon
      • 24 Sun
      • 23 Sat
      • 22 Fri
      • 21 Thu
      • 20 Wed
      • 19 Tue
      • 18 Mon
      • 17 Sun
      • 16 Sat
      • 15 Fri
      • 14 Thu
      • 13 Wed
      • 12 Tue
      • 11 Mon
      • 10 Sun
      • 9 Sat
      • 8 Fri
      • 7 Thu
      • 6 Wed
      • 5 Tue
      • 4 Mon
      • 3 Sun
      • 2 Sat
      • 1 Fri
  • 2020 TIL
    • DEC
      • 31 Thu
      • 30 Wed
      • 29 Tue
      • 28 Mon
      • 27 Sun
      • 26 Sat
      • 25 Fri
      • 24 Thu
      • 23 Wed
      • 22 Tue
      • 21 Mon
      • 20 Sun
      • 19 Sat
      • 18 Fri
      • 17 Thu
      • 16 Wed
      • 15 Tue
      • 14 Mon
      • 13 Sun
      • 12 Sat
      • 11 Fri
      • 10 Thu
      • 9 Wed
      • 8 Tue
      • 7 Mon
      • 6 Sun
      • 5 Sat
      • 4 Fri
      • 3 Tue
      • 2 Wed
      • 1 Tue
    • NOV
      • 30 Mon
Powered by GitBook
On this page
  • Dataset/Loader
  • Config
  • Train_test_split
  • Transform
  • Dataset
  • DataLoader
  • EfficientNet

Was this helpful?

  1. TIL : ML
  2. Boostcamp 2st
  3. Mask Wear Image Classification

DAY 3 : DataSet/Lodaer | EfficientNet

210825

Dataset/Loader

์˜ค๋Š˜์˜ ๋ฏธ์…˜์€ ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋ฐ์ดํ„ฐ๋กœ๋”๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๊ฒƒ. ์‚ฌ์‹ค ํ›„๊ธฐ๋ฅผ ์ž‘์„ฑํ•˜๋Š” ์‹œ์ ์—์„œ๋Š” ์–ด๋ ค์šด ๋ถ€๋ถ„์ด ์—†์ง€๋งŒ, ์ •๋ง๋กœ ๋ง‰์ƒ ์ฒ˜์Œ ๊ตฌํ˜„ํ•  ๋•Œ๋Š” ๋„ˆ๋ฌด ๋ง‰๋ง‰ํ–ˆ๋‹ค. ๊ทธ๋งŒํผ ๋‚ด๊ฐ€ ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜์ง€ ๋ชปํ•œ๊ฑฐ๊ฒ ์ง€.

์ผ๋‹จ ์ฒ˜์Œ์—๋Š” ์บ๊ธ€์„ ์ฐธ๊ณ ํ–ˆ๋‹ค. ์บ๊ธ€ ์ฝ”๋“œ๋ฅผ ๊ทธ๋Œ€๋กœ ์“ด ๊ฒƒ์€ ์•„๋‹ˆ๊ณ  ์–ด๋– ํ•œ ํ๋ฆ„์œผ๋กœ ์จ์ง€๋Š” ๊ตฌ๋‚˜๋ฅผ ์ฐธ๊ณ ํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด์„œ ์•Œ๊ฒŒ๋œ ๋ถ€๋ถ„์€ CFG ๋ผ๋Š” ๋”•์…”๋„ˆ๋ฆฌ ๋ณ€์ˆ˜์— ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ชจ๋‘ ์„ ์–ธํ•ด๋†“๋Š” ๋ฐฉ๋ฒ•์ด์—ˆ๋‹ค. ๋” ์•Œ์•„๋ณด๋‹ˆ ์ด๋ฅผ ํด๋ž˜์Šค๋กœ ์„ ์–ธํ•˜๋Š” ์‚ฌ๋žŒ๋„ ์žˆ์—ˆ๋‹ค.

Config

DATA_DIR = './input/data/train/images/'
CFG = {
    'fold_num': 5,
    'seed': 719,
    'epochs': 30,
    'train_bs': 30,
    'valid_bs': 60,
    'T_0': 10,
    'lr': 1e-5,
    'max_lr': 1e-3,
    'weight_decay':1e-6,
    'num_workers': 8,
    'accum_iter': 2, # suppoprt to do batch accumulation for backprop with effectively larger batch size
    'verbose_step': 1,
    'device': torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
}
print(f'{CFG["device"]} is using!')

Train_test_split

์ดํ›„, Train data์™€ Valid data๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ์ด ๋•Œ๋Š” sklearn ์˜ train_test_split ๋ฅผ ์‚ฌ์šฉํ–ˆ๋‹ค.

data = pd.read_csv('./train_face.csv')
train_df, valid_df  = train_test_split(data, test_size=0.35, shuffle=True, stratify=data['label'], random_state=2021)
train_df.shape, valid_df.shape
  • ์ธ์ž๋กœ data ํ•˜๋‚˜๋งŒ ์ฃผ์–ด์ง€๋ฉด train_data ์™€ valid_data๋กœ ๋‚˜๋ˆ„์–ด ์ฃผ๋ฉฐ ์ธ์ž๋กœ data์™€ label์ด ์ฃผ์–ด์ง€๋ฉด trainX, trainY, validX, validY๋กœ ๋‚˜๋ˆ„์–ด์กŒ๋‹ค. ๋‚˜๋Š” ์ „์ž๊ฐ€ ํ•„์š”ํ•ด์„œ data ์ธ์ž ํ•˜๋‚˜๋งŒ ์ฃผ์—ˆ๋‹ค.

Transform

transform = transforms.Compose([
    transforms.CenterCrop((380, 380)),
    transforms.RandomHorizontalFlip(p=0.5),
    transforms.RandomChoice([transforms.ColorJitter(brightness=(0.2, 3)),
                             transforms.ColorJitter(contrast=(0.2, 3)),
                             transforms.ColorJitter(saturation=(0.2, 3)),
                             transforms.ColorJitter(hue=(-0.3, 0.3))
                            ]),
    transforms.ToTensor(),
    transforms.Normalize(mean, std)
])
  • ์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ๊ฐ€ 384 * 512์ด๋‹ค. ์–ผ๊ตด์ด ๋Œ€๋ถ€๋ถ„ ์ค‘์•™์— ์œ„์น˜ํ•˜๋ฏ€๋กœ CenterCrop์„ ์‚ฌ์šฉํ•˜๋ฉด ๋œ๋‹ค๊ณ  ์ƒ๊ฐ์ด ๋“ค์—ˆ๋‹ค. CenterCrop์„ ์‚ฌ์šฉํ•˜๋Š” ์ด์œ ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

    • ์ด๋ฏธ์ง€ ์‚ฌ์ด์ฆˆ๊ฐ€ ์ž‘์„์ˆ˜๋ก GPU์‚ฌ์šฉ์ด ์ค„์–ด๋“ ๋‹ค. ์‹ค์ œ๋กœ ์›๋ณธ ์ด๋ฏธ์ง€๋ฅผ ์ž…๋ ฅํ–ˆ์„ ๋•Œ๋Š” batch size๋ฅผ ๋งค์šฐ ์ž‘๊ฒŒ ํ•ด์•ผ๋งŒ ๋Œ์•„๊ฐ”๋‹ค.

    • ์‚ฌ๋žŒ์˜ ์–ผ๊ตด ์ •๋ณด๋งŒ ํ•„์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ๋‹ค. ๊ทธ ์™ธ์—๋Š” ๋ฒฝ์ด๋‚˜ ์˜ท๋“ฑ์˜ ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€๊ฐ€ ํ•™์Šต์— ์˜คํžˆ๋ ค ๋ฐฉํ•ด๊ฐ€ ๋œ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ๋‹ค.

    • ๋‹ค์Œ ์ด๋ฏธ์ง€๋ฅผ ์ฐธ๊ณ  ํ•˜๋ฉด ์•Œ ์ˆ˜ ์žˆ๋“ฏ์ด b4๊ฐ€ ํ•™์Šตํ•œ ์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ๋Š” 380์ด๋‹ค.

  • ๊ทธ ์™ธ์— ๋งŽ์€ Transform์„ ํ•ด์ฃผ์ง€๋Š” ์•Š์•˜๋‹ค. RandomChoice๋ฅผ ์‚ฌ์šฉํ•ด์„œ 4๊ฐœ์˜ trsf ๋ฅผ ์ž„์˜๋กœ ์ ์šฉ๋˜๋„๋ก ํ•ด์ฃผ์—ˆ๊ณ  ์ด ์•ˆ์— ์žˆ๋Š” ๋ณ€ํ™˜์€ ๋ฐ๊ธฐ, ์ฑ„๋„ ๋“ฑ์˜ ํ”ฝ์…€๊ฐ’ ๋ณ€ํ™˜์ด๋‹ค.

  • 1/2 ํ™•๋ฅ ๋กœ ์ขŒ์šฐ๋ฐ˜์ „์ด ์ผ์–ด๋‚˜๋„๋ก ํ–ˆ๋‹ค.

  • ToTensor ๋ฅผ ์ด์šฉํ•ด ํ…์„œ๋กœ ๋ณ€ํ™˜๋˜๊ฒŒ ํ–ˆ๊ณ  ์ •๊ทœํ™”๋ฅผ ํ–ˆ๋‹ค. ์ด ๋•Œ ํ‰๊ท ๊ณผ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ’์€ train image์˜ ํ‰๊ท ๊ณผ ํ‘œ์ค€ํŽธ์ฐจ ๊ฐ’์„ ์•„๋ž˜์™€ ๊ฐ™์ด ๊ตฌํ–ˆ๊ณ  ์ด๋ฅผ ์ƒ์ˆ˜๋กœ ๊ณ„์† ์“ฐ๋„๋ก ํ–ˆ๋‹ค.

    • seed๊ฐ€ ๊ณ ์ •๋˜์–ด ์žˆ์–ด์„œ ๊ณ„์† ๋˜‘๊ฐ™์€ train image๋กœ ๊ณ ์ •๋œ๋‹ค.

def get_img_stats(img_paths):
    img_info = dict(means=[], stds=[])
    for img_path in tqdm(img_paths):
        img = np.array(Image.open(glob(img_path)[0]))
        img_info['means'].append(img.mean(axis=(0,1)))
        img_info['stds'].append(img.std(axis=(0,1)))
    return img_info

img_stats = get_img_stats(train_df.path.values)
mean = np.mean(img_stats["means"], axis=0) / 255.
std = np.mean(img_stats["stds"], axis=0) / 255.
print(f'RGB Mean: {mean}')
print(f'RGB Standard Deviation: {std}')
  • ๋‹จ์ˆœํžˆ ์ด๋ฏธ์ง€๋ฅผ ๋ถˆ๋Ÿฌ์™€์„œ ๋ชจ๋“  ํ”ฝ์…€๊ฐ’์„ ํ•ฉํ•˜๊ณ  ์ด์—๋Œ€ํ•œ ํ‰๊ท ๊ณผ ํ‘œ์ค€ํŽธ์ฐจ๋ฅผ ๊ตฌํ•˜๋Š” ๊ณผ์ •์ด๋‹ค.

Dataset

class MaskDataset(Dataset):
    def __init__(self, df, transform=None):
        self.path = df['path']
        self.transform = transform
        self.label = df['label']
    
    def __len__(self):
        return len(self.path)
    
    def __getitem__(self, index):
        image = Image.open(self.path.iloc[index])
        if self.transform:
            image = self.transform(image)
        label = self.label.iloc[index]
        return image, torch.tensor(label)
    
class TestMaskDataset(Dataset):
    def __init__(self, df, transform=None):
        self.path = df['path']
        self.transform = transform
    
    def __len__(self):
        return len(self.path)
    
    def __getitem__(self, index):
        image = Image.open(self.path.iloc[index])
        if self.transform:
            image = self.transform(image)
        return image
  • init

    • dataframe์„ ์ธ์ž๋กœ ๋ฐ›๊ณ  ๊ทธ ์•ˆ์— ์žˆ๋Š” ํŠน์ • ์ปฌ๋Ÿผ์„ X์™€ y๋กœ ์ •ํ–ˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” path ์™€ label ์ด๋‹ค.

  • getitem

    • PIL ํŒจํ‚ค์ง€์˜ Image ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์ด๋ฏธ์ง€๋ฅผ ๋ถˆ๋Ÿฌ์™”๋‹ค. cv2 ๋ฅผ ์‚ฌ์šฉํ•  ๊นŒ ํ–ˆ์ง€๋งŒ BGR๋กœ ์ฝ์–ด์ง€๊ณ  ์ด๋ฅผ ๋งค๋ฒˆ convert ํ•ด์ค˜์•ผ ํ•ด์„œ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜๋‹ค.

    • dataframe์—์„œ index๋กœ ์ ‘๊ทผํ•˜๋ ค๋ฉด iloc ๋ฅผ ์‚ฌ์šฉํ•ด์•ผํ•œ๋‹ค.

    • image๋Š” transform์—์„œ ToTensor ๋ฅผ ๊ฑฐ์น˜๋ฉด์„œ tensor ํ˜•ํƒœ๊ฐ€ ๋˜๋‹ˆ๊นŒ ๊ทธ๋Œ€๋กœ ๋ฐ˜ํ™˜ํ•ด์ฃผ๊ณ , label์€ tensor๋กœ ์บ์ŠคํŒ…ํ•ด์ค€๋‹ค.

train_dataset = MaskDataset(df=train_df, transform=transform)
valid_dataset = MaskDataset(df=valid_df, transform=transform)
  • ๋ฐ์ดํ„ฐ์…‹์„ ์ƒ์„ฑํ•œ๋‹ค.

DataLoader

train_loader = DataLoader(dataset = train_dataset,
                          batch_size=CFG['train_bs'],
                          shuffle=True,
                          num_workers=CFG['num_workers'],
                         )

valid_loader = DataLoader(dataset = valid_dataset,
                          batch_size=CFG['valid_bs'],
                          shuffle=False,
                          num_workers=CFG['num_workers'],
                         )
  • ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๋ฐฐ์น˜ ์‚ฌ์ด์ฆˆ๋Š” ์ž‘๊ฒŒ ํ–ˆ๊ณ  ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์˜ ๋ฐฐ์น˜ ์‚ฌ์ด์ฆˆ๋Š” 2๋ฐฐ๋กœ ์„ค์ •ํ–ˆ๋‹ค,

    • ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๋ฐฐ์น˜ ์‚ฌ์ด์ฆˆ๋Š” 30 ๋˜๋Š” 60์œผ๋กœ ๊ฒฐ์ •ํ–ˆ๋‹ค.

EfficientNet

์‚ฌ์‹ค, ์—ฌ๋Ÿฌ ๋ชจ๋ธ์„ ์ฐพ์•„๋ณด๊ณ  ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์ด ๋งž์ง€๋งŒ, ์—ฌ๋Ÿฌ ์ด์œ ๋ฅผ ํ†ตํ•ด EfficientNet์„ ์ œ์ผ ๋จผ์ € ์‚ฌ์šฉํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค.

  • ์ด์ „ 1๊ธฐ ๋ฉค๋ฒ„์˜ ํฌ์ŠคํŒ…์„ ์ฐธ๊ณ ํ•˜๋‹ˆ EfficientNet ์‚ฌ์šฉ

  • ์ด๋ฏธ์ง€๋„ท ๋ฆฌ๋”๋ณด๋“œ์—์„œ EfficientNet์ด 3๋“ฑ์ด๋‹ค.

    • ๊ทธ๋ž˜์„œ ๋‚ด์ผ 1, 2๋“ฑ ๋ชจ๋ธ์ธ ViT๋„ ์‚ฌ์šฉํ•ด๋ณผ ์˜ˆ์ •

  • ๋ฉ˜ํ† ๋‹˜์˜ ์ถ”์ฒœ

์ƒ๊ฐ๋ณด๋‹ค ๋ชจ๋ธ์„ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๊ฒƒ์€ ์‰ฌ์› ๋‹ค.

from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b4')

๋˜, ๋ชจ๋ธ๋“ค์„ ๋ชจ์•„๋†“์€ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ timm ์„ ์‚ฌ์šฉํ•ด์„œ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜๋„ ์žˆ์—ˆ๋‹ค. efficientnet ๋ชจ๋ธ์˜ ์ข…๋ฅ˜๋Š” ๊ต‰์žฅํžˆ ๋งŽ๋‹ค.

import timm
timm.list_models('*eff*')
['eca_efficientnet_b0',
 'efficientnet_b0',
 'efficientnet_b1',
 'efficientnet_b1_pruned',
 'efficientnet_b2',
 'efficientnet_b2_pruned',
 'efficientnet_b2a',
 'efficientnet_b3',
 'efficientnet_b3_pruned',
 'efficientnet_b3a',
 'efficientnet_b4',
 'efficientnet_b5',
 'efficientnet_b6',
 'efficientnet_b7',
 'efficientnet_b8',
 'efficientnet_cc_b0_4e',
 'efficientnet_cc_b0_8e',
 'efficientnet_cc_b1_8e',
 'efficientnet_el',
 'efficientnet_el_pruned',
 'efficientnet_em',
 'efficientnet_es',
 'efficientnet_es_pruned',
 'efficientnet_l2',
 'efficientnet_lite0',
 'efficientnet_lite1',
 'efficientnet_lite2',
 'efficientnet_lite3',
 'efficientnet_lite4',
 'efficientnetv2_l',
 'efficientnetv2_m',
 'efficientnetv2_rw_m',
 'efficientnetv2_rw_s',
 'efficientnetv2_s',
 'gc_efficientnet_b0',
 'tf_efficientnet_b0',
 'tf_efficientnet_b0_ap',
 'tf_efficientnet_b0_ns',
 'tf_efficientnet_b1',
 'tf_efficientnet_b1_ap',
 'tf_efficientnet_b1_ns',
 'tf_efficientnet_b2',
 'tf_efficientnet_b2_ap',
 'tf_efficientnet_b2_ns',
 'tf_efficientnet_b3',
 'tf_efficientnet_b3_ap',
 'tf_efficientnet_b3_ns',
 'tf_efficientnet_b4',
 'tf_efficientnet_b4_ap',
 'tf_efficientnet_b4_ns',
 'tf_efficientnet_b5',
 'tf_efficientnet_b5_ap',
 'tf_efficientnet_b5_ns',
 'tf_efficientnet_b6',
 'tf_efficientnet_b6_ap',
 'tf_efficientnet_b6_ns',
 'tf_efficientnet_b7',
 'tf_efficientnet_b7_ap',
 'tf_efficientnet_b7_ns',
 'tf_efficientnet_b8',
 'tf_efficientnet_b8_ap',
 'tf_efficientnet_cc_b0_4e',
 'tf_efficientnet_cc_b0_8e',
 'tf_efficientnet_cc_b1_8e',
 'tf_efficientnet_el',
 'tf_efficientnet_em',
 'tf_efficientnet_es',
 'tf_efficientnet_l2_ns',
 'tf_efficientnet_l2_ns_475',
 'tf_efficientnet_lite0',
 'tf_efficientnet_lite1',
 'tf_efficientnet_lite2',
 'tf_efficientnet_lite3',
 'tf_efficientnet_lite4',
 'tf_efficientnetv2_b0',
 'tf_efficientnetv2_b1',
 'tf_efficientnetv2_b2',
 'tf_efficientnetv2_b3',
 'tf_efficientnetv2_l',
 'tf_efficientnetv2_l_in21ft1k',
 'tf_efficientnetv2_l_in21k',
 'tf_efficientnetv2_m',
 'tf_efficientnetv2_m_in21ft1k',
 'tf_efficientnetv2_m_in21k',
 'tf_efficientnetv2_s',
 'tf_efficientnetv2_s_in21ft1k',
 'tf_efficientnetv2_s_in21k']

๋‚˜๋Š” ์ด ์ค‘์—์„œ efficientnet_b4 ๋ชจ๋ธ์„ ์„ ํƒํ–ˆ๋‹ค. ์ด์œ ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • b7 ์‹œ๋ฆฌ์ฆˆ ๋ถ€ํ„ฐ๋Š” V100 ์œผ๋กœ ๋Œ๋ฆด ์ˆ˜๊ฐ€ ์—†์—ˆ๋‹ค.

    • ์ด ๋‹น์‹œ batch_size๋Š” 30์ด๋‹ค. ๋” ์ž‘๊ฒŒํ–ˆ์œผ๋ฉด ๊ฐ€๋Šฅํ•  ์ˆ˜๋„ ์žˆ์—ˆ๊ฒ ์ง€๋งŒ, 15,000 ์žฅ์˜ ๋ฐ์ดํ„ฐ์…‹์„ ์—ฌ๋Ÿฌ epoch๋ฅผ ๋Œ๋ ค๊ฐ€๋ฉฐ ํ™•์ธํ•œ๋‹ค๊ณ  ํ•˜๋ฉด ์—„์ฒญ๋‚œ ์‹œ๊ฐ„์ด ์†Œ์š”๋  ๊ฒƒ์ด๊ธฐ ๋•Œ๋ฌธ์—, ์ ์–ด๋„ ์ œ์ผ ๋งˆ์ง€๋ง‰์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.

  • b5 ์‹œ๋ฆฌ์ฆˆ ๋ถ€ํ„ฐ๋Š” pretrained=True ์ธ ๋ชจ๋ธ์ด ์—†๋‹ค. ์ฆ‰ b4 ๊นŒ์ง€๋งŒ pretrained ๋œ ๋ชจ๋ธ๋กœ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ–ˆ๋‹ค.

์‹ค์ œ๋กœ pretrained์˜ ํž˜์€ ์—„์ฒญ๋‚ฌ๋Š”๋ฐ, ์žฅ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • 7๋ฒˆ ์ดํ•˜์˜ ์ ์€ epoch ์ˆ˜๋กœ๋„ train data๊ฐ€ ์™„์ „ํžˆ ํ•™์Šต๋˜์—ˆ๋‹ค. ๊ทธ๋งŒํผ ์ ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค.

  • ๋”ฐ๋ผ์„œ, ์ ์€ epoch ์•ˆ์—์„œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์‹คํ—˜์ด ๊ฐ€๋Šฅํ–ˆ๋‹ค. Loss ํ•จ์ˆ˜๋Š” ์–ด๋–ค๊ฒƒ์ด ์ข‹๊ณ , Lr Scheduler๋Š” ์–ด๋–ค ๊ฒƒ์ด ์ข‹๊ณ  ๋“ฑ์˜ ์‹คํ—˜.

  • ๋ฐ˜๋Œ€๋กœ ๋งํ•˜๋ฉด, pretrained ๋œ ๋ชจ๋ธ์ด ์•„๋‹ˆ๋ผ๋ฉด ์˜ค๋ฒ„ํ”ผํŒ… ๋˜๋Š” ์‹œ์ ์˜ epoch๋ฅผ ์•Œ๊ธฐ๊ฐ€ ์–ด๋ ค์› ๊ณ , ๋งค๋ฒˆ ๋ฐ”๋€” ๊ฐ€๋Šฅ์„ฑ๋„ ์žˆ๋‹ค. ๋˜, ์‹œ๊ฐ„๋„ ๋งŽ์ด ์†Œ์š”๋˜์–ด ์–ด๋–ค ์‹คํ—˜์„ ํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ณ , early stopping ๊ฐ™์ด ๋ถ€์ˆ˜์ ์ธ ๋ถ€๋ถ„์„ ์ถ”๊ฐ€ํ–ˆ์–ด์•ผ ํ–ˆ๋‹ค.

์‚ฌ์‹ค, ํ•œ๋ฒˆ 50~100 epoch ์”ฉ ๋Œ๋ฆฌ๋ฉด์„œ ํ•™์Šต ํ•ด๋ณด๊ณ  ์‹ถ์—ˆ์ง€๋งŒ, ์ œ์ถœ์— ๋Œ€ํ•œ ์••๋ฐ•๋„ ์žˆ์—ˆ๊ณ , ์—ฌ๋Ÿฌ ์‹คํ—˜๋„ ํ•ด๋ณด๊ณ  ์‹ถ์—ˆ๋‹ค. ๋˜, ์„ฑ๋Šฅ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ํ…Œํฌ๋‹‰์„ ํ•ด๋ณผ๊ฒŒ ๋งŽ๋‹ค๊ณ  ์ƒ๊ฐํ–ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ๋Š” ์•„์‰ฝ์ง€๋งŒ ๊ทธ๋ž˜๋„ pretrained ๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด์„œ ๋˜ ๋‹ค์–‘ํ•œ ์‹คํ—˜๊ณผ ํ…Œํฌ๋‹‰์„ ์ ์šฉํ–ˆ๊ธฐ์— ํ›„ํšŒ๋Š” ์—†๋‹ค.

from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b4', num_classes=18)
model = model.to(CFG['device'])

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=CFG['lr'])

torch.cuda.empty_cache()
lrs = []

# for epoch in range(7):
for epoch in range(CFG['epochs']):
    model.train()
    train_batch_f1 = 0
    train_batch_accuracy = []
    train_batch_loss = []
    train_pbar = tqdm(train_loader)
    
    for n, (X, y) in enumerate(train_pbar):
        X, y = X.to(CFG['device']), y.to(CFG['device'])
        y_hat = model(X)
        loss = criterion(y_hat, y)
        pred = torch.argmax(y_hat, axis=1)
                            
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        lrs.append(optimizer.param_groups[0]["lr"])
        
        train_batch_accuracy.append(
            torch.sum(pred == y).cpu().numpy() / CFG['train_bs']
        )
        train_batch_loss.append(
            loss.item()
        )
        f1 = f1_score(y.cpu().numpy(), pred.cpu().numpy(), average='macro')
        train_batch_f1 += f1
        
        train_pbar.set_description(f'train : {n} / {len(train_loader)} | f1 : {f1:.5f} | accuracy : {train_batch_accuracy[-1]:.5f} | loss : {train_batch_loss[-1]:.5f}')
        
    model.eval()
    valid_batch_f1 = 0
    valid_batch_accuracy = []
    valid_batch_loss = []
    valid_pbar = tqdm(valid_loader)
    
    with torch.no_grad():
        for n, (X, y) in enumerate(valid_pbar):
            X, y = X.to(CFG['device']), y.to(CFG['device'])
            y_hat = model(X)
            loss = criterion(y_hat, y)
            pred = torch.argmax(y_hat, axis=1)
            
            valid_batch_accuracy.append(
                torch.sum(pred == y).cpu().numpy() / CFG['valid_bs']
            )
            valid_batch_loss.append(
                loss.item()
            )
            f1 = f1_score(y.cpu().numpy(), pred.cpu().numpy(), average='macro')
            valid_batch_f1 += f1
            
            valid_pbar.set_description(f'valid : {n} / {len(valid_loader)} | f1 : {f1:.5f} | accuracy : {valid_batch_accuracy[-1]:.5f} | loss : {valid_batch_loss[-1]:.5f}')


    print(f"""
epoch : {epoch+1:02d}
[train] f1 : {train_batch_f1/len(train_loader):.5f} | accuracy : {np.sum(train_batch_accuracy) / len(train_loader):.5f} | loss : {np.sum(train_batch_loss) / len(train_loader):.5f}
[valid] f1 : {valid_batch_f1/len(valid_loader):.5f} | accuracy : {np.sum(valid_batch_accuracy) / len(valid_loader):.5f} | loss : {np.sum(valid_batch_loss) / len(valid_loader):.5f}
""")
    
    if valid_batch_f1/len(valid_loader) >= 0.9:
        torch.save(model.state_dict(), f'v:f1_{valid_batch_f1/len(valid_loader):.3f}_t:f1_{train_batch_f1/len(train_loader):.5f}_efficientnet_b4_state_dict.pt')  # ๋ชจ๋ธ ๊ฐ์ฒด์˜ state_dict ์ €์žฅ

์•„๋ฌด๋Ÿฐ ํ…Œํฌ๋‹‰์„ ์ ์šฉํ•˜์ง€ ์•Š๊ณ  ๋Œ๋ ธ์„ ๋•Œ์˜ f1 ์ ์ˆ˜๋Š” 60์  ์ค‘๋ฐ˜ ์ •๋„๊ฐ€ ๋‚˜์™”๋‹ค. ์ƒ๊ฐ๋ณด๋‹ค ์ ์ˆ˜๊ฐ€ ๋‚ฎ๋„ค ์‹ถ์—ˆ์ง€๋งŒ, ์—ฌ๋Ÿฌ ํ…Œํฌ๋‹‰์„ ๊ณ ๋ฏผํ•ด๋ณด๊ณ  ์žˆ๋‹ค.

PreviousDAY 4 : VIT | F1_Loss | LrSchedulerNextDAY 2 : Labeling

Last updated 3 years ago

Was this helpful?

https://github.com/lukemelas/EfficientNet-PyTorch/issues/42